scholarly journals Catestatin (Cst) protects the brain against ischemia/reperfusion injury through suppressing ER-stress and mitochondrial dysfunction

2020 ◽  
Author(s):  
Pei Bing ◽  
Chunjie Song ◽  
Zhengjiang Zhang ◽  
Shen Xin ◽  
Cui Qian

Abstract BackgroundCerebral stroke, known as a cerebral vascular accident (CVA), is one of the leading causes of long-term disability and the second leading cause of death worldwide. Despite amounts of advances that have been achieved in terms of the treatment of ischemic stroke. But thus far, clinically effective neuroprotectants remain elusive, which may mainly due to the lack of a complete understanding of molecular mechanisms of the stroke. Previous studies have been revealed that catestatin (Cst) is closely related to cardiovascular ischemia/reperfusion injuries. However, little is known about whether Cst is involved in the regulation of neuronal death processes during ischemia. MethodsIn the present study, we revealed a protective function of Cst on Rat neuron cell death in the setting of ischemia/reperfusion injury. ResultsWe found that Cst treatment significantly attenuated the deficits of hippocampal related behaviors. On mechanism, our data revealed that Cst administration remarkably reduced ER-stress and mitochondrial dysfunction caused by I/R injury, and subsequently protected brain cells from apoptosis. ConclusionIn sum, our results demonstrate that Cst ameliorates I/R injury-induced hippocampal-related behaviors deficits by protecting the neurons from I/R injury-induced ER-stress and mitochondrial dysfunction and apoptosis. Our findings may provide a promising novel neuroprotectant for ischemic stroke therapy.

2020 ◽  
Vol 31 (4) ◽  
pp. 716-730 ◽  
Author(s):  
Marc Johnsen ◽  
Torsten Kubacki ◽  
Assa Yeroslaviz ◽  
Martin Richard Späth ◽  
Jannis Mörsdorf ◽  
...  

BackgroundAlthough AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance.MethodsTo identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury.ResultsThe gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI.ConclusionsThis comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).


2018 ◽  
Vol 315 (1) ◽  
pp. H150-H158 ◽  
Author(s):  
Marie Hauerslev ◽  
Sivagowry Rasalingam Mørk ◽  
Kasper Pryds ◽  
Hussain Contractor ◽  
Jan Hansen ◽  
...  

Remote ischemic conditioning (RIC) protects against sustained myocardial ischemia. Because of overlapping mechanisms, this protection may be altered by glyceryl trinitrate (GTN), which is commonly used in the treatment of patients with chronic ischemic heart disease. We investigated whether long-term GTN treatment modifies the protection by RIC in the rat myocardium and human endothelium. We studied infarct size (IS) in rat hearts subjected to global ischemia-reperfusion (I/R) in vitro and endothelial function in healthy volunteers subjected to I/R of the upper arm. In addition to allocated treatment, rats were coadministered with reactive oxygen species (ROS) or nitric oxide (NO) scavengers. Rats and humans were randomized to 1) control, 2) RIC, 3) GTN, and 4) GTN + RIC. In protocols 3 and 4, rats and humans underwent long-term GTN treatment for 7 consecutive days, applied subcutaneously or 2 h daily transdermally. In rats, RIC and long-term GTN treatment reduced mean IS (18 ± 12%, P = 0.007 and 15 ± 5%, P = 0.002) compared with control (35 ± 13%). RIC and long-term GTN treatment in combination did not reduce IS (29 ± 12%, P = 0.55 vs. control). ROS and NO scavengers both attenuated IS reduction by RIC and long-term GTN treatment. In humans, I/R reduced endothelial function ( P = 0.01 vs. baseline). Separately, RIC and long-term GTN prevented the reduction in endothelial function caused by I/R; given in combination, prevention was lost. RIC and long-term GTN treatment both protect against rat myocardial and human endothelial I/R injury through ROS and NO-dependent mechanisms. However, when given in combination, RIC and long-term GTN treatment fail to confer protection. NEW & NOTEWORTHY Remote ischemic conditioning (RIC) and long-term glyceryl trinitrate (GTN) treatment protect against ischemia-reperfusion injury in both human endothelium and rat myocardium. However, combined application of RIC and long-term GTN treatment abolishes the individual protective effects of RIC and GTN treatment on ischemia-reperfusion injury, suggesting an interaction of clinical importance.


2009 ◽  
Vol 35 (2) ◽  
pp. 304-312 ◽  
Author(s):  
Niels P. van der Kaaij ◽  
Jolanda Kluin ◽  
Jack J. Haitsma ◽  
Michael A. den Bakker ◽  
Bart N. Lambrecht ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1864
Author(s):  
Norbert Nemeth ◽  
Katalin Peto ◽  
Zsuzsanna Magyar ◽  
Zoltan Klarik ◽  
Gabor Varga ◽  
...  

Hepatic ischemia-reperfusion injury (IRI) is a multifactorial phenomenon which has been associated with adverse clinical outcomes. IRI related tissue damage is characterized by various chronological events depending on the experimental model or clinical setting. Despite the fact that IRI research has been in the spotlight of scientific interest for over three decades with a significant and continuous increase in publication activity over the years and the large number of pharmacological and surgical therapeutic attempts introduced, not many of these strategies have made their way into everyday clinical practice. Furthermore, the pathomechanism of hepatic IRI has not been fully elucidated yet. In the complex process of the IRI, flow properties of blood are not neglectable. Hemorheological factors play an important role in determining tissue perfusion and orchestrating mechanical shear stress-dependent endothelial functions. Antioxidant and anti-inflammatory agents, ischemic conditioning protocols, dynamic organ preservation techniques may improve rheological properties of the post-reperfusion hepatic blood flow and target endothelial cells, exerting a potent protection against hepatic IRI. In this review paper we give a comprehensive overview of microcirculatory, rheological and molecular–pathophysiological aspects of hepatic circulation in the context of IRI and hepatoprotective approaches.


2020 ◽  
Author(s):  
Yan Zhang ◽  
Yao Lu ◽  
Kai Wang ◽  
Mei-yan Zhou ◽  
Cong-you Wu ◽  
...  

Abstract Background: Lung ischemia-reperfusion injury (LIRI) is a significant clinical problem occurring after lung transplantation. LIRI is mediated by the overproduction of reactive oxygen species (ROS) and inflammatory activation. Previous studies have confirmed that dexmedetomidine (DEX) exerts a protective effect on LIRI, which potentially causes severe mitochondrial dysfunction. However, the specific mechanisms remain unclear. Our study was to explore whether dexmedetomidine exerts a beneficial effect on LIRI by reducing mitochondrial dysfunction. Methods: Two different models were used in our study. For the in vivo experiment, thirty-two male Sprague-Dawley rats were randomly divided into Sham, ischemia-reperfusion (I/R), DEX+I/R and DEX+yohimbine+I/R (DY+I/R) groups. Similarly, pulmonary vascular endothelial cells (PVECs) from SD rats were divided into Control, oxygen glucose deprivation (OGD), D+OGD and DY+OGD groups.Results: In our experiment, we confirmed severe lung damage after LIRI that was characterized by significantly pulmonary histopathology injury, a decrease in the oxygenation index (PaO2/FiO2) and an increase in the wet-to-dry weight ratio, while DEX treatment mitigated this damage. In addition, the DEX pretreatment significantly attenuated I/R-induced oxidative stress by decreasing the level of ROS in the mitochondria in vitro. Moreover, the DEX treatment enhanced mitochondrial biogenesis and autophagy by increasing the expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), mitochondrial transcription factor A (Tfam), PTEN-induced putative kinase 1 (PINK1), Parkin and dynamin 1-like protein 1 (Drp1). Conclusions: These data suggest that DEX may alleviate LIRI by reducing mitochondrial dysfunction through the induction of mitochondrial biogenesis and autophagy.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Jingyuan Li ◽  
Victor R Grijalva ◽  
Srinivasa T Reddy ◽  
Mansoureh Eghbali

Objectives: Paraoxonases (PON) gene family consists of three proteins PON1, PON2, and PON3. PON2 is an intracellular membrane-associated protein that is widely expressed in vascular cells and many tissues. At the subcellular level, PON2 is localized to both the ER and mitochondria, and protects against oxidative stress. Hypothesis: The aim of this study was to investigate the role of PON2 in myocardial ischemia reperfusion injury. Methods: PON2 deficient (PON2-/-) and WT male mice were subjected to in-vivo ischemia/reperfusion injury. The left anterior descending coronary artery was occluded for 30 min followed by 24 hr of reperfusion. The infarct size, mitochondrial calcium retention capacity (CRC) and reactive oxygen species (ROS) generation were measured. The expression of C/EBP homologous protein (CHOP), GSK3b and phosphate GSK3b protein were examined by Western Blot. The number of animals was 5-7/group and data were expressed as mean±SEM. T test were used for statistical analysis. Probability values <0.05 were considered statistically significant. Results: The infarct size was ~2 fold larger in PON2 deficient mice compared to WT mice (p<0.05). The threshold for opening of mitochondrial permeability transition pore (mPTP) in response to calcium overload was much lower in PON2-/- mice compared with WT mice (173±19 in PON2-/-, 250±41 in WT, nmol/mg-mitochondrial protein, p<0.05). The ROS production was ~2 fold higher in isolated cardiac mitochondria from PON2-/- mice compared with WT mice (p<0.05). ER stress protein CHOP increased significantly in PON2-/- mice compared to WT mice (normalized to WT: 1±0.05 in WT, 1.66±0.08 in PON2-/-, p<0.001). Phospho-GSK3b level was significantly downregulated in in PON2-/- mice compared to WT mice (pGSK3b/GSK3b normalized to WT: 1±0.06 in WT 0.67±0.08 in PON2-/-, p<0.05). Conclusions: PON2 regulates myocardial ischemia/reperfusion injury via inhibiting the opening of mPTP, which is associated with reduced mitochondria ROS production, deactivation of ER stress signaling CHOP and GSK3b.


Sign in / Sign up

Export Citation Format

Share Document