scholarly journals Tumor-Associated Macrophages Secret Exosomal miR-155 to Promote Metastasis of Non-Small-Cell Lung Cancer

2020 ◽  
Author(s):  
Xiang Li ◽  
Zhipeng Chen ◽  
Yaojun Ni ◽  
Quan Zhu ◽  
Weibing Wu ◽  
...  

Abstract Background: Understanding the molecular basis underlying metastasis of non-small-cell lung cancer (NSCLC) may provide new therapeutic modality for the treatment of NSCLC. However, the mechanisms by which tumor-associated macrophages (TAMs) affect NSCLC metastasis still remain undefined.Methods: The role of macrophages in NSCLC was elucidated by gene set enrichment analysis via The Cancer Genome Atlas database (TCGA) database, and we further verified it through Quantitative real-time PCR and immunohistochemical staining. Exosomes from TAMs were extracted and co-cultured with A549 cells,the biological functions of miR-155 were evaluated through miRNAs sequencing, transwell assays,western blotting,fluorescence labeling,luciferase reporter assay, and animal experiments.Results: We found that M2 TAMs are abundant in metastatic tissues of NSCLC patients and exosomes secreted by M2 TAMs promote epithelial mesenchymal transition(EMT) and migration of A549 cells.Mechanistically,we demonstrated that miR-155 is the biomolecule in exosomes secreted by M2 TAMs and targets 3’-untranslated regions (UTRs) of RASSF4 to promote NSCLC metastasis.Conclusions: MiR-155 is the key functional molecule in M2 TAMs-released exosomes that promote EMT of NSCLC cells through targeting RASSF4. Our study suggests that miR-155 in TAMs and exosomes may serve as a novel therapeutic target in the treatment of lung cancer.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hongli Pan ◽  
Zhenhua Pan ◽  
Fengjie Guo ◽  
Fanrong Meng ◽  
Lingling Zu ◽  
...  

Abstract Background MicroRNAs (miRNAs) have been reported to play significant roles in non-small-cell lung cancer (NSCLC). However, the roles of microRNA (miR)-1915-3p in NSCLC remain unclear. In this study, we aimed to explore the biological functions of miR-1915-3p in NSCLC. Methods The expression of miR-1915-3p and SET nuclear proto-oncogene (SET) in NSCLC tissues were examined by quantitative real-time PCR (qRT-PCR). Migratory and invasive abilities of lung cancer were tested by wound healing and transwell invasion assay. The direct target genes of miR-1915-3p were measured by dual-luciferase reporter assay and western blot. Finally, the regulation between METTL3/YTHDF2/KLF4 axis and miR-1915-3p were evaluated by qRT-PCR, promoter reporter assay and chromatin immunoprecipitation (CHIP). Results miR-1915-3p was downregulated in NSCLC tissues and cell lines, and inversely associated with clinical TNM stage and overall survival. Functional assays showed that miR-1915-3p significantly suppressed migration, invasion and epithelial-mesenchymal transition (EMT) in NSCLC cells. Furthermore, miR-1915-3p directly bound to the 3′untranslated region (3′UTR) of SET and modulated the expression of SET. SET inhibition could recapitulate the inhibitory effects on cell migration, invasion and EMT of miR-1915-3p, and restoration of SET expression could abrogate these effects induced by miR-1915-3p through JNK/Jun and NF-κB signaling pathways. What’s more, miR-1915-3p expression was regulated by METTL3/YTHDF2 m6A axis through transcription factor KLF4. Conclusions These findings demonstrate that miR-1915-3p function as a tumor suppressor by targeting SET and may have an anti-metastatic therapeutic potential for lung cancer treatment.


2020 ◽  
Author(s):  
Xiang Li ◽  
Yaojun Ni ◽  
Zhipeng Chen ◽  
Quan Zhu ◽  
Weibing Wu ◽  
...  

Abstract Background: Understanding the molecular basis underlying metastasis of non-small-cell lung cancer (NSCLC) may provide new therapeutic modality for treatment of NSCLC. However, the mechanisms by which tumor-associated macrophages (TAMs) affect NSCLC metastasis still remain undefined. Method: Phenotype of TAMs was identified by flow cytometry. The migration of the tumor cells was detected by transwell assay. Transmission electron microscopy (TEM) and PKH-67 was used to identified and label the exosome. Expression of miR-155 was measured by qRT-PCR. Luciferase analysis, western blot, and rescue assay were used to investigate potential mechanisms of miR-155.Results: We discovered a novel regulatory pathway involved in NSCLC metastasis. We found that M2 TAMs were the main TAMs in metastatic tissues of NSCLC patients and exosomes derived from M2 TAMs were able to promote epithelial-mesenchymal transition (EMT) and migration of NSCLC cells. We demonstrated that miR-155 was abundant in M2 TAMs and exosomes secreted by M2 TAMs. Moreover, we also verified that miR-155 was the key functional biomolecule in exosomes secreted by M2 TAMs. Furthermore, we confirmed that deletion of miR-155 in M2 TAMs could significantly prevent NSCLC metastasis. Overall, Conclusions: we revealed a new regulatory pathway that is M2 TAMs secret exosomal miR-155 to promote NSCLC metastasis. Our findings may provide a practical target for treatment of NSCLC.


2019 ◽  
Vol 22 (4) ◽  
pp. 238-244 ◽  
Author(s):  
Gang Chen ◽  
Bo Ye

Purpose: Epithelial-to-Mesenchymal Transition (EMT) was reported to play a key role in the development of Non-Small Cell Lung Cancer (NSCLC). The process of EMT is regulated by the changes of miRNAs expression. However, it is still unknown which miRNA changed the most in the process of canceration and whether these changes played a role in tumor development. Methods: A total of 36 SCLC patients treated in our hospital between 11th, 2015 and 10th, 2017 were enrolled. The samples of cancer tissues and paracancer tissues of patients were collected and analyzed. Then, the miRNAs in normal lung cells and NSCLC cells were also analyzed. In the presence of TGF-β, we transfected the miRNA mimics or inhibitor into NSCLC cells to investigate the role of the significantly altered miRNAs in cell migration and invasion and in the process of EMT. Results: MiR-330-3p was significantly up-regulated in NSCLC cell lines and tissues and miRNA- 205 was significantly down-regulated in NSCLC cell lines and NSCLC tissues. Transfected miRNA-205 mimics or miRMA-330-3p inhibitor inhibited the migration and invasion of NCIH1975 cell and restrained TGF-β-induced EMT in NSCLC cells. Conclusion: miRNA-330-3p and miRNA-205 changed the most in the process of canceration in NSCLC. Furthermore, miR-330-3p promoted cell invasion and metastasis in NSCLC probably by promoting EMT and miR-205 could restrain NSCLC likely by suppressing EMT.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tingting Sun ◽  
Jing Chen ◽  
Xuechao Sun ◽  
Guonian Wang

Abstract Backgrounds As previously reported, midazolam anesthesia exerts tumor-suppressing effects in non-small cell lung cancer (NSCLC), but the regulating effects of this drug on cisplatin-resistance in NSCLC have not been studied. Thus, we designed this study to investigate this issue and preliminarily delineate the potential molecular mechanisms. Methods We performed MTT assay and trypan blue staining assay to measure cell proliferation and viability. Cell apoptosis was examined by FCM. qRT-PCR and immunoblotting were performed to determine the expression levels of genes. The targeting sites between genes were predicted by bioinformatics analysis and were validated by dual-luciferase reporter gene system assay. Mice tumor-bearing models were established and the tumorigenesis was evaluated by measuring tumor weight and volume. Immunohistochemistry (IHC) was used to examine the pro-proliferative Ki67 protein expressions in mice tumor tissues. Results The cisplatin-resistant NSCLC (CR-NSCLC) cells were treated with high-dose cisplatin (50 μg/ml) and low-dose midazolam (10 μg/ml), and the results showed that midazolam suppressed cell proliferation and viability, and promoted cell apoptosis in cisplatin-treated CR-NSCLC cells. In addition, midazolam enhanced cisplatin-sensitivity in CR-NSCLC cell via modulating the miR-194-5p/hook microtubule-tethering protein 3 (HOOK3) axis. Specifically, midazolam upregulated miR-194-5p, but downregulated HOOK3 in the CR-NSCLC cells, and further results validated that miR-194-5p bound to the 3’ untranslated region (3’UTR) of HOOK3 mRNA for its inhibition. Also, midazolam downregulated HOOK3 in CR-NSCLC cells by upregulating miR-194-5p. Functional experiments validated that both miR-194-5p downregulation and HOOK3 upregulation abrogated the promoting effects of midazolam on cisplatin-sensitivity in CR-NSCLC cells. Conclusions Taken together, this study found that midazolam anesthesia reduced cisplatin-resistance in CR-NSCLC cells by regulating the miR-194-5p/HOOK3 axis, implying that midazolam could be used as adjuvant drug for NSCLC treatment in clinical practices.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marianne Oulhen ◽  
Patrycja Pawlikowska ◽  
Tala Tayoun ◽  
Marianna Garonzi ◽  
Genny Buson ◽  
...  

AbstractGatekeeper mutations are identified in only 50% of the cases at resistance to Anaplastic Lymphoma Kinase (ALK)-tyrosine kinase inhibitors (TKIs). Circulating tumor cells (CTCs) are relevant tools to identify additional resistance mechanisms and can be sequenced at the single-cell level. Here, we provide in-depth investigation of copy number alteration (CNA) heterogeneity in phenotypically characterized CTCs at resistance to ALK-TKIs in ALK-positive non-small cell lung cancer. Single CTC isolation and phenotyping were performed by DEPArray or fluorescence-activated cell sorting following enrichment and immunofluorescence staining (ALK/cytokeratins/CD45/Hoechst). CNA heterogeneity was evaluated in six ALK-rearranged patients harboring ≥ 10 CTCs/20 mL blood at resistance to 1st and 3rd ALK-TKIs and one presented gatekeeper mutations. Out of 82 CTCs isolated by FACS, 30 (37%) were ALK+/cytokeratins-, 46 (56%) ALK-/cytokeratins+ and 4 (5%) ALK+/cytokeratins+. Sequencing of 43 CTCs showed highly altered CNA profiles and high levels of chromosomal instability (CIN). Half of CTCs displayed a ploidy >2n and 32% experienced whole-genome doubling. Hierarchical clustering showed significant intra-patient and wide inter-patient CTC diversity. Classification of 121 oncogenic drivers revealed the predominant activation of cell cycle and DNA repair pathways and of RTK/RAS and PI3K to a lower frequency. CTCs showed wide CNA heterogeneity and elevated CIN at resistance to ALK-TKIs. The emergence of epithelial ALK-negative CTCs may drive resistance through activation of bypass signaling pathways, while ALK-rearranged CTCs showed epithelial-to-mesenchymal transition characteristics potentially contributing to ALK-TKI resistance. Comprehensive analysis of CTCs could be of great help to clinicians for precision medicine and resistance to ALK-targeted therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lihua Yang ◽  
Jie Yang ◽  
Jingqiu Li ◽  
Xingkai Shen ◽  
Yanping Le ◽  
...  

Editor's Note: this Article has been retracted; the Retraction Note is available at https://doi.org/10.1038/s41598-021-88178-8.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lan-Lan Lin ◽  
Fan Yang ◽  
Dong-Huan Zhang ◽  
Cong Hu ◽  
Sheng Yang ◽  
...  

Abstract Background Rho GTPase activating protein 10 (ARHGAP10) has been implicated as an essential element in multiple cellular process, including cell migration, adhesion and actin cytoskeleton dynamic reorganization. However, the correlation of ARHGAP10 expression with epithelial–mesenchymal transition (EMT) in lung cancer cells is unclear and remains to be elucidated. Herein, we investigated the relationship between the trait of ARHGAP10 and non-small cell lung cancer (NSCLC) pathological process. Methods Immunohistochemistry was conducted to evaluate the expression of ARHGAP10 in NSCLC tissues. CCK-8 assays, Transwell assays, scratch assays were applied to assess cell proliferation, invasion and migration. The expression levels of EMT biomarkers and active molecules involved in PI3K/Akt/GSK3β signaling pathway were examined through immunofluorescence and Western blot. Results ARHGAP10 was detected to be lower expression in NSCLC tissues compared with normal tissues from individuals. Moreover, overexpression of ARHGAP10 inhibited migratory and invasive potentials of A549 and NCI-H1299 cells. In addition, ARHGAP10 directly mediated the process of EMT via PI3K/Akt/GSK3β pathway. Meanwhile, activation of the signaling pathway of insulin-like growth factors-1 (IGF-1) reversed ARHGAP10 overexpression regulated EMT in NSCLC cells. Conclusion ARHGAP10 inhibits the epithelial–mesenchymal transition in NSCLC via PI3K/Akt/GSK3β signaling pathway, suggesting agonist of ARHGAP10 may be an optional remedy for NSCLC patients than traditional opioids.


Sign in / Sign up

Export Citation Format

Share Document