scholarly journals Antimicrobial Resistance in Hospitalized Surgical Patients: a Silently Emerging Public Health Concern in Benin.

2020 ◽  
Author(s):  
Carine Laurence YEHOUENOU ◽  
Arsène A. KPANGON ◽  
Dissou AFFOLABI ◽  
Hector RODRIGUEZ-VILLALOBOS ◽  
Françoise Van Bambeke ◽  
...  

Abstract Background: Surgical site infections are related to high morbidity, mortality and healthcare costs. As the emergence of multidrug-resistant bacterial pathogens in hospitals is becoming a worldwide challenge for surgeons who treat healthcare-associated infections, we wished to identify the causative agents involved in surgical site infections and their susceptibility pattern in six public hospitals in Benin. Methods: Using standard microbiological procedures, we processed pus specimens collected from obstetrics and gastrointestinal surgery wards. Mass spectrometry (MALDI-TOF) was used for confirmation. The antibiotic susceptibility test firstly used the Kirby-Bauer disc diffusion method. The secondary test by microdilution used the Beckton Dickinson Phoenix automated system (Becton Dickinson Diagnostic, USA). Results: We included 304 patients (mean age 32 ± 11 years), whose median length of stay was 9 days. A total of 259 wound swabs (85.2%) had positive aerobic bacterial growth. In obstetrics S. aureus (28.5%, n=42) was the most common isolate. In contrast, Gram-negative bacteria (GNB) were predominant in gastrointestinal surgery. The most dominant being E.coli (38.4%, n=31). Overall, 90.8% (n=208) of aerobic bacteria were multidrug resistant. Two-third of S. aureus (65.3%, n= 32) were methicillin-resistant Staphylococcus aureus (MRSA), three of which carried both MRSA and induced clindamycin resistance (ICR). GNB showed high resistance to ceftazidime, ceftriaxone and cefepime. Extended-spectrum beta-lactamases were presented by 69.4% of E.coli (n=43/62) and 83.3% of K. pneumoniae (n=25/30). Overall, twelve Gram negative bacteria (5.24%) isolates showed resistance to at least one carbapenem. No isolates showed a wild-type susceptible phenotype.Conclusion: This study shows the alarming prevalence of multidrug resistant organisms from surgical site infections in Benin hospitals. To reduce the spread of these multidrug-resistant bacteria, periodic surveillance of surgical site infections and strict adherence to good hand-hygiene practice are essential.

2020 ◽  
Author(s):  
Carine Laurence Yehouenou ◽  
Arsène A. Kpangon ◽  
Dissou Affolabi ◽  
Hector Rodriguez-Villalobos ◽  
Françoise Van Bambeke ◽  
...  

Abstract Background: Surgical site infections are related to high morbidity, mortality and healthcare costs. Because the emergence of multidrug-resistant bacteria in hospitals is becoming a worldwide challenge for surgeons who treat healthcare-associated infections, we wished to identify the causative agents involved in these infections and the rate of multidrug-resistant bacteria in six public hospitals in Benin. Methods: Using standard microbiological procedures, we processed pus specimens collected from obstetrics and gastrointestinal surgery wards. Mass spectrometry (MALDI-TOF) was used for confirmation. For the antibiotic susceptibility test, we first used the Kirby-Bauer disk diffusion method. The secondary test (by microdilution) used the Beckton Dickinson Phoenix automated system (Becton Dickinson Diagnostic, USA). Results: We included 304 patients, whose median length of stay was 9 days. A total of 259 wound swabs (85.2%) had positive aerobic bacterial growth. In obstetrics, S. aureus (28.5%, n=42) was the most common isolate. In contrast, Gram-negative bacteria (GNB) were predominant in gastrointestinal surgery, the most dominant being E. coli (38.4%, n=31). Overall, 90.8% (n=208) of aerobic bacteria were multidrug resistant. Two-thirds of S. aureus (65.3%, n= 32) were methicillin-resistant Staphylococcus aureus (MRSA), three of which carried both MRSA and induced clindamycin resistance (ICR). GNB showed high resistance to ceftazidime, ceftriaxone and cefepime. Extended-spectrum beta-lactamases were presented by 69.4% of E.coli (n=43/62) and 83.3% of K. pneumoniae (n=25/30). Overall, twelve Gram-negative bacteria (5.24%) showed resistance to at least one carbapenem. No isolates showed a wild-type susceptible phenotype. Conclusion: This study shows the alarming prevalence of multidrug-resistant organisms from surgical site infections in Benin hospitals. To reduce the spread of such bacteria, periodic surveillance of surgical site infections and strict adherence to good hand-hygiene practice are essential.


Author(s):  
Carine Laurence Yehouenou ◽  
Arsène A. Kpangon ◽  
Dissou Affolabi ◽  
Hector Rodriguez-Villalobos ◽  
Françoise Van Bambeke ◽  
...  

Abstract Background Surgical site infections are related to high morbidity, mortality and healthcare costs. Because the emergence of multidrug-resistant bacteria in hospitals is becoming a worldwide challenge for surgeons who treat healthcare-associated infections, we wished to identify the causative agents involved in these infections and the rate of multidrug-resistant bacteria in six public hospitals in Benin. Methods Using standard microbiological procedures, we processed pus specimens collected from obstetrics and gastrointestinal surgery wards. Mass spectrometry (MALDI-TOF) was used for confirmation. For the antibiotic susceptibility test, we first used the Kirby-Bauer disk diffusion method. The secondary test (by microdilution) used the Beckton Dickinson Phoenix automated system (Becton Dickinson Diagnostic, USA). Results We included 304 patients, whose median length of stay was 9 days. A total of 259 wound swabs (85.2%) had positive aerobic bacterial growth. In obstetrics, S. aureus (28.5%, n = 42) was the most common isolate. In contrast, Gram-negative bacteria (GNB) were predominant in gastrointestinal surgery, the most dominant being E.coli (38.4%, n = 31). Overall, 90.8% (n = 208) of aerobic bacteria were multidrug resistant. Two-thirds of S. aureus (65.3%, n = 32) were methicillin-resistant Staphylococcus aureus (MRSA), three of which carried both MRSA and induced clindamycin resistance (ICR). GNB showed high resistance to ceftazidime, ceftriaxone and cefepime. Extended-spectrum beta-lactamases were presented by 69.4% of E.coli (n = 43/62) and 83.3% of K. pneumoniae (n = 25/30). Overall, twelve Gram-negative bacteria (5.24%) showed resistance to at least one carbapenem. No isolates showed a wild-type susceptible phenotype. Conclusion This study shows the alarming prevalence of multidrug-resistant organisms from surgical site infections in Benin hospitals. To reduce the spread of such bacteria in Benin, periodic surveillance of surgical site infections and strict adherence to good hand-hygiene practice are essential.


2017 ◽  
Vol 66 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Fevronia Kolonitsiou ◽  
Matthaios Papadimitriou-Olivgeris ◽  
Anastasia Spiliopoulou ◽  
Vasiliki Stamouli ◽  
Vasileios Papakostas ◽  
...  

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections’ (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011–13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs’ incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative’s BSI.


Author(s):  
Adam Mustapha ◽  
Mustafa Alhaji Isa ◽  
Ibrahim Yusuf Ngoshe ◽  
Hashidu Bala

Aim: Prevalence of multidrug resistant bacteria on apparently health animals has turned antibiotic resistance to multifaceted process and threatens global food security and public health. The aim of the present study was to investigate the resistance profile of isolates from apparently healthy cattle in Maiduguri, Nigeria. Methodology: A total of 120 nasal swab samples were collected from cattle. Colony identification was according to the guidelines of Bergey’s Manual of Determinative Bacteriology. The susceptibility pattern of the isolates was conducted on the identified isolates according to the Modified Kirby-Baur disc diffusion method on Muller-Hilton agar and interpreted according to the procedures of Clinical Laboratory Standards Institute (CLSI, 2018) guidelines. Multiple Antibiotic Resistance Index (MARI) was calculated using the formula, MARI=a/b where “a” is the number of antibiotic resisted and “b” is the total number of antibiotic used in the study. Results: Of the total samples (120) from cattle 96 (80%) detected the following isolates; E. coli was the most commonly recovered isolates (33, 34.4%), followed by Klebsiella spp (28, 29.2%), Salmonella spp (21, 21.9%) and Pseudomonas aeruginosa (14, 14.5%). In this study, all the recovered isolates were found to be multidrug resistant gram negative bacteria, with highest resistance was shown by Salmonella spp. The high MARI observed in all the isolates in this study ranging from 0.7 to 0.9. MARI value of 0.2 > is suggests multiple antibiotic resistant bacteria and indicate presence of highly resistant bacteria. Conclusion: The study indicates highly resistant bacteria are carried by healthy food animals. Thus, there is need for continued monitoring of antibiotics use in animal husbandry to prevent further spread of resistance in Maiduguri, Nigeria.


10.3823/824 ◽  
2018 ◽  
Vol 8 (3) ◽  
Author(s):  
Abdelraouf A Elmanama ◽  
Mariam Raed Al-Reefi ◽  
Mohammed A. Albayoumi ◽  
Alaa M. Marouf ◽  
Islam F. Hassona

Background: Multidrug resistant bacteria (MDR), such as Escherichia coli and Salmonella spp. are threat to the human health care system. In recent years, these MDR bacteria have been found increasingly inside and outside the hospital environment. Food animals (meat and poultry) are increasingly colonized with MDR bacteria, thus posing an additional concern. This study is intended to determine susceptibility and resistance pattern of pathogenic Gram negative bacteria isolated from rectal swabs of chicken against 16 antibiotics. Methods: A total of 216 cloacal swab samples (Gaza strip poultry farms) and 87 frozen and fresh meat samples (from slaughter houses and retails) from June 2017 to June 2018 were collected. Isolation and identification of organisms were achieved using standard bacteriological techniques. Antimicrobial susceptibility test was performed according to standard protocols. Results: 360 Enterobacteriaceae isolates, and 56 Gram-negative non fermenter were recovered. The predominant Enterobacteriaceae isolate was Citrobacter spp. (22.6%), followed by Enterobacter spp. (17.6%) and E. coli (16.5%). High rates of resistance against Ampicillin (85.4%) and Trimethoprim/ Sulfamethoxazole (80.1%) followed by Chloramphenicol (74%) were recorded. Six samples were positive for Salmonella spp. and Shigella spp. Of the tested Enterobacteriacae isolates, 94.7% were multidrug resistant (MDR), and 31.4% of  None fermenting bacilli (NFB) were MDR. Carbapenem resistance was found to be high among isolates; 51.9% for imipenem and 1.8% for meropenem. Conclusion: Isolated bacteria in the study area were MDR and this suggests that chickens may be important reservoir of antimicrobial resistant organisms which is a major public health concern.    


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1143
Author(s):  
Marco Túlio Pardini Gontijo ◽  
Genesy Perez Jorge ◽  
Marcelo Brocchi

The prevalence of multidrug-resistant Gram-negative bacteria is a public health concern. Bacteriophages and bacteriophage-derived lytic enzymes have been studied in response to the emergence of multidrug-resistant bacteria. The availability of tRNAs and endolysin toxicity during recombinant protein expression is circumvented by codon optimization and lower expression levels using inducible pET-type plasmids and controlled cultivation conditions, respectively. The use of polyhistidine tags facilitates endolysin purification and alters antimicrobial activity. Outer membrane permeabilizers, such as organic acids, act synergistically with endolysins, but some endolysins permeate the outer membrane of Gram-negative bacteria per se. However, the outer membrane permeation mechanisms of endolysins remain unclear. Other strategies, such as the co-administration of endolysins with polymyxins, silver nanoparticles, and liposomes confer additional outer membrane permeation. Engineered endolysins comprising domains for outer membrane permeation is also a strategy used to overcome the current challenges on the control of multidrug-resistant Gram-negative bacteria. Metagenomics is a new strategy for screening endolysins with interesting antimicrobial properties from uncultured phage genomes. Here, we review the current state of the art on the heterologous expression of endolysin, showing the potential of bacteriophage endolysins in controlling bacterial infections.


Author(s):  
M. Y. Iliyasu ◽  
I. Mustapha ◽  
H. Yakubu ◽  
H. M. Shuaibu ◽  
A. F. Umar ◽  
...  

Background of Study: Many virulence determinants contribute to the pathogenicity of Gram negative bacteria, like Escherichia coli, which is the most common cause of many infections worldwide such as urinary tract infection (UTI), profuse diarrhoea and septicaemia. Aim: To determine the genotypic characteristics of adhesin-producing E. coli isolates from clinical specimens. Place and Duration of Study: Conducted at the Infectious diseases hospital Bayara, Bauchi state, Nigeria, between February to March, 2019. Methods: A total of twelve (12) Gram negative bacterial isolates were selected based on the ability to grow on Luria-Bertani (LB) agar medium containing 100 µg/ml ampicillin. The isolates were from urine, stool, and blood specimens. The isolates were screened for multidrug resistant pattern according to Kirby-Bauer disc diffusion method. Adhesion factors, Fimbrial adhesin (fimH) and Invasive plasmid adhesin (ipaH) was genotyped by conventional PCR and sequenced. Results: All the isolates were resistant to Ampicillin, Cephalothin, Erythromycin, Fusidic acid, Novobiocin and Oxacillin, but sensitive to Augmentin, Colistin sulphate and Imipenem. Presence of fimH and ipaH genes were observed in nine isolates that expressed strong relationship with. Multidrug resistance (MDR). The fimH was the most prevalent found in urine, stool and blood isolates. Most of the adhesion genes sequence (61.8%) in this study had significant alignment (95 to 100% homology) with E.coli genome in the NCBI database. Conclusion: This study revealed the role of adhesin as virulence markers in MDR Gram negative bacteria and FimH is one of the commonest gene in MDR E.coli pathotypes.


2019 ◽  
Vol 116 (43) ◽  
pp. 21748-21757 ◽  
Author(s):  
Elizabeth M. Hart ◽  
Angela M. Mitchell ◽  
Anna Konovalova ◽  
Marcin Grabowicz ◽  
Jessica Sheng ◽  
...  

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the β-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K. BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K. Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


2016 ◽  
Vol 82 (12) ◽  
pp. 3605-3610 ◽  
Author(s):  
Andreas F. Wendel ◽  
Sofija Ressina ◽  
Susanne Kolbe-Busch ◽  
Klaus Pfeffer ◽  
Colin R. MacKenzie

ABSTRACTReports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones ofEnterobacter cloacaeandPseudomonas aeruginosain a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43blaGIM-1-carrying bacteria (mainly nonfermenters but alsoEnterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in twoE. cloacaeisolates with MICs above 256 mg/liter. TheblaGIM-1gene was harbored in 12 different class 1 integrons, some without the typical 3′ end. TheblaGIM-1gene was localized on plasmids in five isolates.In vitroplasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a “melting pot” for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks.IMPORTANCEIn Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total “resistance gene pool” in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of theblaGIM-1gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Alessandro Delli Paoli Carini ◽  
Ellen Ariel ◽  
Jacqueline Picard ◽  
Lisa Elliott

This study aimed to test multidrug resistant isolates from hospitalised green turtles(Chelonia mydas)and their environment in North Queensland, Australia, forin vitrosusceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77%) and ampicillin (69.2%). More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%), ceftiofur (53.8%), and erythromycin (53.3%). All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, includingVibrio harveyiandV. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.


Sign in / Sign up

Export Citation Format

Share Document