scholarly journals Genotypic Detection and Characterization of Adhesins in Clinical Escherichia coli Isolates

Author(s):  
M. Y. Iliyasu ◽  
I. Mustapha ◽  
H. Yakubu ◽  
H. M. Shuaibu ◽  
A. F. Umar ◽  
...  

Background of Study: Many virulence determinants contribute to the pathogenicity of Gram negative bacteria, like Escherichia coli, which is the most common cause of many infections worldwide such as urinary tract infection (UTI), profuse diarrhoea and septicaemia. Aim: To determine the genotypic characteristics of adhesin-producing E. coli isolates from clinical specimens. Place and Duration of Study: Conducted at the Infectious diseases hospital Bayara, Bauchi state, Nigeria, between February to March, 2019. Methods: A total of twelve (12) Gram negative bacterial isolates were selected based on the ability to grow on Luria-Bertani (LB) agar medium containing 100 µg/ml ampicillin. The isolates were from urine, stool, and blood specimens. The isolates were screened for multidrug resistant pattern according to Kirby-Bauer disc diffusion method. Adhesion factors, Fimbrial adhesin (fimH) and Invasive plasmid adhesin (ipaH) was genotyped by conventional PCR and sequenced. Results: All the isolates were resistant to Ampicillin, Cephalothin, Erythromycin, Fusidic acid, Novobiocin and Oxacillin, but sensitive to Augmentin, Colistin sulphate and Imipenem. Presence of fimH and ipaH genes were observed in nine isolates that expressed strong relationship with. Multidrug resistance (MDR). The fimH was the most prevalent found in urine, stool and blood isolates. Most of the adhesion genes sequence (61.8%) in this study had significant alignment (95 to 100% homology) with E.coli genome in the NCBI database. Conclusion: This study revealed the role of adhesin as virulence markers in MDR Gram negative bacteria and FimH is one of the commonest gene in MDR E.coli pathotypes.

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2017 ◽  
Vol 66 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Fevronia Kolonitsiou ◽  
Matthaios Papadimitriou-Olivgeris ◽  
Anastasia Spiliopoulou ◽  
Vasiliki Stamouli ◽  
Vasileios Papakostas ◽  
...  

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections’ (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011–13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs’ incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative’s BSI.


2020 ◽  
Author(s):  
Carine Laurence YEHOUENOU ◽  
Arsène A. KPANGON ◽  
Dissou AFFOLABI ◽  
Hector RODRIGUEZ-VILLALOBOS ◽  
Françoise Van Bambeke ◽  
...  

Abstract Background: Surgical site infections are related to high morbidity, mortality and healthcare costs. As the emergence of multidrug-resistant bacterial pathogens in hospitals is becoming a worldwide challenge for surgeons who treat healthcare-associated infections, we wished to identify the causative agents involved in surgical site infections and their susceptibility pattern in six public hospitals in Benin. Methods: Using standard microbiological procedures, we processed pus specimens collected from obstetrics and gastrointestinal surgery wards. Mass spectrometry (MALDI-TOF) was used for confirmation. The antibiotic susceptibility test firstly used the Kirby-Bauer disc diffusion method. The secondary test by microdilution used the Beckton Dickinson Phoenix automated system (Becton Dickinson Diagnostic, USA). Results: We included 304 patients (mean age 32 ± 11 years), whose median length of stay was 9 days. A total of 259 wound swabs (85.2%) had positive aerobic bacterial growth. In obstetrics S. aureus (28.5%, n=42) was the most common isolate. In contrast, Gram-negative bacteria (GNB) were predominant in gastrointestinal surgery. The most dominant being E.coli (38.4%, n=31). Overall, 90.8% (n=208) of aerobic bacteria were multidrug resistant. Two-third of S. aureus (65.3%, n= 32) were methicillin-resistant Staphylococcus aureus (MRSA), three of which carried both MRSA and induced clindamycin resistance (ICR). GNB showed high resistance to ceftazidime, ceftriaxone and cefepime. Extended-spectrum beta-lactamases were presented by 69.4% of E.coli (n=43/62) and 83.3% of K. pneumoniae (n=25/30). Overall, twelve Gram negative bacteria (5.24%) isolates showed resistance to at least one carbapenem. No isolates showed a wild-type susceptible phenotype.Conclusion: This study shows the alarming prevalence of multidrug resistant organisms from surgical site infections in Benin hospitals. To reduce the spread of these multidrug-resistant bacteria, periodic surveillance of surgical site infections and strict adherence to good hand-hygiene practice are essential.


Author(s):  
Adam Mustapha ◽  
Mustafa Alhaji Isa ◽  
Ibrahim Yusuf Ngoshe ◽  
Hashidu Bala

Aim: Prevalence of multidrug resistant bacteria on apparently health animals has turned antibiotic resistance to multifaceted process and threatens global food security and public health. The aim of the present study was to investigate the resistance profile of isolates from apparently healthy cattle in Maiduguri, Nigeria. Methodology: A total of 120 nasal swab samples were collected from cattle. Colony identification was according to the guidelines of Bergey’s Manual of Determinative Bacteriology. The susceptibility pattern of the isolates was conducted on the identified isolates according to the Modified Kirby-Baur disc diffusion method on Muller-Hilton agar and interpreted according to the procedures of Clinical Laboratory Standards Institute (CLSI, 2018) guidelines. Multiple Antibiotic Resistance Index (MARI) was calculated using the formula, MARI=a/b where “a” is the number of antibiotic resisted and “b” is the total number of antibiotic used in the study. Results: Of the total samples (120) from cattle 96 (80%) detected the following isolates; E. coli was the most commonly recovered isolates (33, 34.4%), followed by Klebsiella spp (28, 29.2%), Salmonella spp (21, 21.9%) and Pseudomonas aeruginosa (14, 14.5%). In this study, all the recovered isolates were found to be multidrug resistant gram negative bacteria, with highest resistance was shown by Salmonella spp. The high MARI observed in all the isolates in this study ranging from 0.7 to 0.9. MARI value of 0.2 > is suggests multiple antibiotic resistant bacteria and indicate presence of highly resistant bacteria. Conclusion: The study indicates highly resistant bacteria are carried by healthy food animals. Thus, there is need for continued monitoring of antibiotics use in animal husbandry to prevent further spread of resistance in Maiduguri, Nigeria.


Author(s):  
Sridevi Chigurupati ◽  
Jahidul Islam Mohammad ◽  
Shantini Vijayabalan ◽  
Narmatha Devi Vaipuri ◽  
Kesavanarayanan Krishnan Selvarajan ◽  
...  

Objectives: Current research is aimed to investigate the natural antimicrobial potential of Durio zibethinus murr. ethanol leaves extract (DZL).Methods: DZL was subjected to the preliminary phytochemical screening along with quantitative analysis of phenols and flavonoids. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were recorded. The agar well diffusion method was used to measure the antibacterial activity against gram positive and gram negative bacteria. The microorganisms used for the study were the ATCC strains of Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes, Neisseria gonorrhoeae, Pseudomonas aeruginosa and Escherichia coli.Results: DZL exhibited the highest MIC of 0.1mg/mL and MBC of 0.25 mg/mL against gram negative bacteria, Pseudomonas aeruginosa and Escherichia coli. At MIC of 0.1mg/mL, DZL displayed significant zone of inhibition against Pseudomonas aeruginosa and Escherichia coli compared to gentamycin.Conclusion: This research has shown that DZL has natural antibacterial properties against gram negative human pathogens.


2011 ◽  
Vol 8 (s1) ◽  
pp. S282-S284 ◽  
Author(s):  
Liliwirianis N ◽  
Wan Zuraida Wan Mohd Zain ◽  
Jamaluddin Kassim ◽  
Shaikh Abdul Karim

Local herbs have many potential that may be active with antimicrobial activity. A screening was conducted with 11 species of herbs collected in UiTM Pahang Forest Reserve.Epipremnumsp.,Zingibersp.Tetracera indica, Tectaria crenata, Piper stylosum, Homalomena propinque, Goniothalamus sp., Elephantopus scaber, Mapania patiolale, Melastomasp.,Stemona tuberosa, Phullagathis rotundifolia, Thotea grandifoliaandSmilaxsp. were extracted with methanol to obtain their crude. The agar diffusion method using blank disc of 6 mm diameter were loaded with 1000 µg/mL of methanol crude and applied to the inoculate plate was used to assess the antimicrobial activity against two gram positive bacteria (Bacillus subtilisandStaphylococcus aeureus) and one gram negative bacteria (Escherichia coli). The results evaluated as the diameter of the inhibition zone of microbial growth, showed that all the extracts were active against gram-positive bacteria and gram-negative bacteria. The extract ofStemona tuberosewas found to be the most active against theE. coliandS. aeureuswhilePiper stylosumactive againstB. subtilis.


mSphere ◽  
2021 ◽  
Author(s):  
Catrina Olivera ◽  
Murray P. Cox ◽  
Gareth J. Rowlands ◽  
Jasna Rakonjac

Synergistic antibiotic combinations are a promising alternative strategy for developing effective therapies for multidrug-resistant bacterial infections. The synergistic combination of the existing antibiotics nitrofurans and vancomycin with sodium deoxycholate shows promise in inhibiting and killing multidrug-resistant Gram-negative bacteria.


Author(s):  
Dipti Pattnaik ◽  
Subhra Snigdha Panda ◽  
Nipa Singh ◽  
Smrutilata Sahoo ◽  
Ipsa Mohapatra ◽  
...  

Background: Multidrug resistance has emerged as a challenge in health care settings. Again increasing prevalence of multidrug resistant (MDR), extensively drug resistant (XDR) and pan drug resistant (PDR) gram negative bacteria is making the condition more critical because of limited options of antibiotics, increasing morbidity, mortality and hospital stay of the patients. The present study is carried out with an aim to estimate the prevalence of MDR, XDR, PDR gram negative bacteria in a tertiary care hospital.Methods: Total of 912 gram negative bacterial isolates obtained from various samples of indoor patients in a tertiary care hospital, were studied over a period of six months. The bacteria were identified by conventional methods. Antibiotic sensitivity testing was done by Kirby Bauer disc diffusion method. Minimum inhibitory concentration (MIC) of antibiotics for the resistant isolates were detected by Vitek-2 automated method. MDR, XDR and PDR were determined according to the definitions suggested by European Centre for Disease Prevention and Control (ECDC), and Centers for Disease Control and Prevention (CDC). Prevalence of extended spectrum beta lactamase (ESBL) producers was estimated.Results: Out of 912 isolates, prevalence of MDR, XDR and PDR were 66.12%, 34.32% and 0.98% respectively. Prevalence of MDR and XDR were higher in ICUs than clinical wards (p<0.0001). Prevalence of ESBL producers was 48.4%.Conclusions: The study highlights increased prevalence of multidrug resistant and extensively drug resistant strains in our hospital. Stringent surveillance, proper implementation of hospital infection control practices and antimicrobial stewardship will help in limiting the emergence and spread of drug resistant strains.


2018 ◽  
Vol 5 ◽  
pp. 25-31
Author(s):  
Bishnu Thapa ◽  
Anjana Singh ◽  
Reshma Tuladhar

Objectives: The aim of this work was to determine the antibacterial activity of methanol extract of herbal plants against the Multidrug resistant (MDR) Gram negative bacteria isolated from clinical samples. Methods: Gram negative bacteria isolated from various clinical samples were processed for antibiotic susceptibility test by modified Kirby-Bauer disc diffusion method and MDR bacteria were selected. Methanol extracts of six different medicinal plants Acorus calamus (bojho), Ocimum sanctum (tulsi), Azadirachta indica (neem), Cinnamomum tamala (tejpatta), Aloe vera and Zanthoxylum alatum (timur), were tested for antibacterial activity against the selected MDR bacteria by agar well diffusion method. Results: From clinical samples, 8 different MDR Gram negative bacteria isolated were Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter spp., Proteus mirabilis, Proteus vulgaris, Acinetobacter spp. and Pseudomonas spp. with E. coli dominated the number. Out of six medicinal plants extracts, Z. alatum, C. tamala and Ocimum sanctum were found to be effective with zones of inhibition ranging from 9-13 mm. The medicinal plants with antibacterial activity can be an alternative source of medicine against MDR Gram negative bacteria. Conclusion: Several herbal plants extracts exhibit antibacterial activity against MDR Gram negative bacteria. Antibacterial activity of plant extracts can vary with type of plant and extraction methods. Thus, for optimal benefit of plant extract, an appropriate extraction method and use of purified product is essential.


Author(s):  
Xiaoyu Lu ◽  
Xia Xiao ◽  
Yuan Liu ◽  
Ruichao Li ◽  
Zhiqiang Wang

Tigecycline and colistin are used as last-resort therapies to treat infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, the emergence of the plasmid-mediated tigecycline resistance gene tet (X4) and the plasmid-mediated colistin resistance gene mcr-1 represents a significant threat to human health.


Sign in / Sign up

Export Citation Format

Share Document