Macrophage Polarization-Related Gene Signature for Risk Stratification and Prognosis of Survival in Gliomas 

Author(s):  
Jingwei Zhang ◽  
Shuwang Li ◽  
Fangkun Liu

Abstract Macrophage polarization plays an essential role in tumor immune cells infiltration and tumor growth. We selected a series of genes distinguishing between M1 and M2 macrophage and explored their prognostic value in gliomas. A total of 170 genes were included in our study. CGGA database was used as the training cohort, and the TCGA database as the validation cohort. The biological processes and functions were identified by GO and KEGG analysis. Kaplan-Meier analysis was used to compare survival differences between groups. Finally, GEPIA was applied to explore immune infiltrates in the tumor microenvironment. Importantly, we re-verified the results using our sequencing data. We build a risk score model using Cox regression analysis based on the CGGA and verified in the TCGA database and our sequencing data. Patients with gliomas in the high-risk group were associated with high grade, IDH WT status, MGMT promoter unmethylation, 1p19q non-codeletion, and prone to have a poor outcome. Moreover, these genes play an essential role in immune infiltrations in LGG and GBM microenvironments. Macrophage polarization-related gene signature can predict the malignancy and outcome of patients with gliomas and might act as a promising target for glioma immunotherapy in the future.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gongmin Zhu ◽  
Hongwei Xia ◽  
Qiulin Tang ◽  
Feng Bi

Abstract Background Tumor metastasis is one of the leading reasons of the dismal prognosis of hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) is closely associated with tumor metastasis including HCC. The purpose of this study is to construct and validate an EMT-related gene signature for predicting the prognosis of HCC patients. Methods Gene expression data of HCC patients was downloaded from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was performed to found the EMT-related gene sets which were obviously distinct between normal samples and paired HCC samples. Cox regression analysis was used to develop an EMT-related prognostic signature, and the performance of the signature was evaluated by Kaplan–Meier curves and time-dependent receiver operating characteristic (ROC) curves. A nomogram incorporating the independent predictors was established. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of the hub genes in HCC cell lines, and the role of PDCD6 in the metastasis of HCC was determined by functional experiments. Results An EMT-related 5-gene signature (PDCD6, TCOF1, TRIM28, EZH2 and FAM83D) was constructed using univariate and multivariate Cox regression analysis. Based on the signature, the HCC patients were classified into high- and low-risk groups, and patients in high-risk group had a poor prognosis. Time-dependent ROC and Cox regression analyses suggested that the signature could predict HCC prognosis exactly and independently. The predictive capacity of the signature was also validated in two external cohorts. GSEA results showed that many cancer-related signaling pathways such as PI3K/Akt/mTOR pathway and TGF-β/SMAD pathway were enriched in high-risk group. The result of qRT-PCR revealed that PDCD6, TCOF1 and FAM83D were highly expressed in HCC cancer cells. Among them, PDCD6 were found to promote cell migration and invasion. Conclusion The EMT-related 5-gene signature can serve as a promising prognostic biomarker for HCC patients and may provide a novel mechanism of HCC metastasis.


2021 ◽  
Vol 10 ◽  
Author(s):  
Dai Zhang ◽  
Yi Zheng ◽  
Si Yang ◽  
Yiche Li ◽  
Meng Wang ◽  
...  

To identify a glycolysis-related gene signature for the evaluation of prognosis in patients with breast cancer, we analyzed the data of a training set from TCGA database and four validation cohorts from the GEO and ICGC databases which included 1,632 patients with breast cancer. We conducted GSEA, univariate Cox regression, LASSO, and multiple Cox regression analysis. Finally, an 11-gene signature related to glycolysis for predicting survival in patients with breast cancer was developed. And Kaplan–Meier analysis and ROC analyses suggested that the signature showed a good prognostic ability for BC in the TCGA, ICGC, and GEO datasets. The analyses of univariate Cox regression and multivariate Cox regression revealed that it’s an important prognostic factor independent of multiple clinical features. Moreover, a prognostic nomogram, combining the gene signature and clinical characteristics of patients, was constructed. These findings provide insights into the identification of breast cancer patients with a poor prognosis.


2021 ◽  
Author(s):  
Tian Lan ◽  
Die Wu ◽  
Wei Quan ◽  
Donghu Yu ◽  
Sheng Li ◽  
...  

Abstract Background: Glioma is a fatal brain tumor characterized by invasive nature, rapidly proliferation and tumor recurrence. Despite aggressive surgical resection followed by concurrent radiotherapy and chemotherapy, the overall survival (OS) of Glioma patients remains poor. Ferroptosis is a unique modality to regulate programmed cell death and associated with multiple steps of tumorigenesis of a variety of tumors.Methods: In this study, ferroptosis-related genes model was identified by differential analysis and Cox regression analysis. GO, KEGG and GSVA analysis were used to detect the potential biological functions and signaling pathway. The infiltration of immune cells was quantified by Cibersort.Results: The patients’ samples are stratified into two risk groups based on 4-gene signature. High-risk group has poorer overall survival. The results of functional analysis indicated that the extracellular matrix-related biologic functions and pathways were enriched in high-risk group, and that the infiltration of immunocytes is different in two groups.Conclusion: In summary, a novel ferroptosis-related gene signature can be used for prognostic prediction in glioma. The filtered genes related to ferroptosis in clinical could be a potential extra method to assess glioma patients’ prognosis and therapeutic.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guichuan Huang ◽  
Jing Zhang ◽  
Ling Gong ◽  
Yi Huang ◽  
Daishun Liu

Abstract Background Lung cancer is one of the most lethal and most prevalent malignant tumors worldwide, and lung squamous cell carcinoma (LUSC) is one of the major histological subtypes. Although numerous biomarkers have been found to be associated with prognosis in LUSC, the prediction effect of a single gene biomarker is insufficient, especially for glycolysis-related genes. Therefore, we aimed to develop a novel glycolysis-related gene signature to predict survival in patients with LUSC. Methods The mRNA expression files and LUSC clinical information were obtained from The Cancer Genome Atlas (TCGA) dataset. Results Based on Gene Set Enrichment Analysis (GSEA), we found 5 glycolysis-related gene sets that were significantly enriched in LUSC tissues. Univariate and multivariate Cox proportional regression models were performed to choose prognostic-related gene signatures. Based on a Cox proportional regression model, a risk score for a three-gene signature (HKDC1, ALDH7A1, and MDH1) was established to divide patients into high-risk and low-risk subgroups. Multivariate Cox regression analysis indicated that the risk score for this three-gene signature can be used as an independent prognostic indicator in LUSC. Additionally, based on the cBioPortal database, the rate of genomic alterations in the HKDC1, ALDH7A1, and MDH1 genes were 1.9, 1.1, and 5% in LUSC patients, respectively. Conclusion A glycolysis-based three-gene signature could serve as a novel biomarker in predicting the prognosis of patients with LUSC and it also provides additional gene targets that can be used to cure LUSC patients.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zheng Yao ◽  
Song Wen ◽  
Jun Luo ◽  
Weiyuan Hao ◽  
Weiren Liang ◽  
...  

Background. Accurate and effective biomarkers for the prognosis of patients with hepatocellular carcinoma (HCC) are poorly identified. A network-based gene signature may serve as a valuable biomarker to improve the accuracy of risk discrimination in patients. Methods. The expression levels of cancer hallmarks were determined by Cox regression analysis. Various bioinformatic methods, such as GSEA, WGCNA, and LASSO, and statistical approaches were applied to generate an MTORC1 signaling-related gene signature (MSRS). Moreover, a decision tree and nomogram were constructed to aid in the quantification of risk levels for each HCC patient. Results. Active MTORC1 signaling was found to be the most vital predictor of overall survival in HCC patients in the training cohort. MSRS was established and proved to hold the capacity to stratify HCC patients with poor outcomes in two validated datasets. Analysis of the patient MSRS levels and patient survival data suggested that the MSRS can be a valuable risk factor in two validated datasets and the integrated cohort. Finally, we constructed a decision tree which allowed to distinguish subclasses of patients at high risk and a nomogram which could accurately predict the survival of individuals. Conclusions. The present study may contribute to the improvement of current prognostic systems for patients with HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Susu Zheng ◽  
Xiaoying Xie ◽  
Xinkun Guo ◽  
Yanfang Wu ◽  
Guobin Chen ◽  
...  

Pyroptosis is a novel kind of cellular necrosis and shown to be involved in cancer progression. However, the diverse expression, prognosis and associations with immune status of pyroptosis-related genes in Hepatocellular carcinoma (HCC) have yet to be analyzed. Herein, the expression profiles and corresponding clinical characteristics of HCC samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then a pyroptosis-related gene signature was built by applying the least absolute shrinkage and selection operator (LASSO) Cox regression model from the TCGA cohort, while the GEO datasets were applied for verification. Twenty-four pyroptosis-related genes were found to be differentially expressed between HCC and normal samples. A five pyroptosis-related gene signature (GSDME, CASP8, SCAF11, NOD2, CASP6) was constructed according to LASSO Cox regression model. Patients in the low-risk group had better survival rates than those in the high-risk group. The risk score was proved to be an independent prognostic factor for overall survival (OS). The risk score correlated with immune infiltrations and immunotherapy responses. GSEA indicated that endocytosis, ubiquitin mediated proteolysis and regulation of autophagy were enriched in the high-risk group, while drug metabolism cytochrome P450 and tryptophan metabolism were enriched in the low-risk group. In conclusion, our pyroptosis-related gene signature can be used for survival prediction and may also predict the response of immunotherapy.


2021 ◽  
Author(s):  
Menglin He ◽  
Cheng Hu ◽  
Jian Deng ◽  
Hui Ji ◽  
Weiqian Tian

Abstract Background: Breast cancer (BC) is a kind of cancer with high incidence and mortality in female. Conventional clinical characteristics are far from accurate to predict individual outcomes. Therefore, we aimed to develop a novel signature to predict the survival of patients with BC. Methods: We analyzed the data of a training cohort from the TCGA database and a validation cohort from GEO database. After the applications of GSEA and Cox regression analyses, a glycolysis-related signature for predicting the survival of patients with BC was developed. The signature contains AK3, CACNA1H, IL13RA1, NUP43, PGK1, and SDC1. Then, we constructed a risk score formula to classify the patients into high and low-risk groups based on the expression levels of six-gene in patients. The receiver operating characteristic (ROC) curve and the Kaplan-Meier curve were used to assess the predicted capacity of the model. Next, a nomogram was developed to predict the outcomes of patients with risk score and clinical features in 1, 3, and 5 years. We further used Human Protein Atlas (HPA) database to validate the expressions of the six biomarkers in tumor and sample tissues.Results: We constructed a six-gene signature to predict the outcomes of patients with BC. The patients in high-risk group showed poor prognosis than that in low-risk group. The AUC values were 0.719 and 0.702, showing that the prediction performance of the signature is acceptable. Additionally, Cox regression analysis revealed that these biomarkers could independently predict the prognosis of BC patients without being affected by clinical factors. The expression levels of all six biomarkers in BC tissues were higher than that in normal tissues except AK3. Conclusion: We developed a six-gene signature to predict the prognosis of patients with BC. Our signature has been proved to have the ability to make an accurate and obvious prediction and might be used to expand the prediction methods in clinical.


2021 ◽  
Author(s):  
Zhen Zhao ◽  
Jianglin Zheng ◽  
Yi Zhang ◽  
Xiaobing Jiang ◽  
Chuansheng Nie ◽  
...  

Abstract Inflammatory response plays a crucial role in the development and progression of gliomas. However, the prognostic value of inflammatory response-related genes has never been comprehensively investigated for glioma. In this study, we identified 39 differentially expressed genes (DEGs) between glioma and normal brain tissue samples, of which 31 inflammatory response-related genes are related to the prognosis of glioma., The 8 optimal inflammatory response-related genes were selected to construct prognostic inflammatory response-related gene signature (IRGS) through the least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis. The effectiveness of the IRGS was verified in the training (TCGA) and validation (CGGA-693 CGGA-325 and Rembrandt) cohorts. The Kaplan-Meier curve revealed a significant difference in the OS between the high- and low-risk groups. The receiver operating characteristic curve (ROC) shows the powerful predictive ability of IRGS. Meanwhile, a nomogram with better accuracy was established to predict overall survival (OS) based on the independent prognostic factors (IRGS, age, WHO grade, and 1p19q codeletion). In addition, patients in the high-risk group had higher immune, stroma, and ESTIMATE scores, lower tumor purity, higher infiltration of immunosuppressive cells, higher expression of immune checkpoints, higher expression of TIDE and Exclusion, and lower expression of MSI Expe Sig. Thus, the patients in the low-risk group had significantly higher respond rate of immune checkpoint inhibitors (ICIs). A novel prognostic signature incorporated 8 inflammatory response-related genes was associated with the prognosis, immune landscape and the immunotherapy response in patients with gliomas. Thus, the signature can be suitable for future clinical application to predict the prognosis of patients with glioma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhang ◽  
Liping Lv ◽  
Ping Ma ◽  
Yangyang Zhang ◽  
Jiang Deng ◽  
...  

BackgroundPancreatic adenocarcinoma (PAAD) spreads quickly and has a poor prognosis. Autophagy research on PAAD could reveal new biomarkers and targets for diagnosis and treatment.MethodsAutophagy-related genes were translated into autophagy-related gene pairs, and univariate Cox regression was performed to obtain overall survival (OS)-related IRGPs (P<0.001). LASSO Cox regression analyses were performed to construct an autophagy-related gene pair (ARGP) model for predicting OS. The Cancer Genome Atlas (TCGA)-PAAD cohort was set as the training group for model construction. The model predictive value was validated in multiple external datasets. Receiver operating characteristic (ROC) curves were used to evaluate model performance. Tumor microenvironments and immune infiltration were compared between low- and high-risk groups with ESTIMATE and CIBERSORT. Differentially expressed genes (DEGs) between the groups were further analyzed by Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and used to identify potential small-molecule compounds in L1000FWD.ResultsRisk scores were calculated as follows: ATG4B|CHMP4C×(-0.31) + CHMP2B|MAP1LC3B×(0.30) + CHMP6|RIPK2 ×(-0.33) + LRSAM1|TRIM5×(-0.26) + MAP1LC3A|PAFAH1B2×(-0.15) + MAP1LC3A|TRIM21×(-0.08) + MET|MFN2×(0.38) + MET|MTDH×(0.47) + RASIP1|TRIM5×(-0.23) + RB1CC1|TPCN1×(0.22). OS was significantly shorter in the high-risk group than the low-risk group in each PAAD cohort. The ESTIMATE analysis showed no difference in stromal scores but a significant difference in immune scores (p=0.0045) and ESTIMATE scores (p=0.014) between the groups. CIBERSORT analysis showed higher naive B cell, Treg cell, CD8 T cell, and plasma cell levels in the low-risk group and higher M1 and M2 macrophage levels in the high-risk group. In addition, the results showed that naive B cells (r=-0.32, p<0.001), Treg cells (r=-0.31, p<0.001), CD8 T cells (r=-0.24, p=0.0092), and plasma cells (r=-0.2, p<0.026) were statistically correlated with the ARGP risk score. The top 3 enriched GO-BPs were signal release, regulation of transsynaptic signaling, and modulation of chemical synaptic transmission, and the top 3 enriched KEGG pathways were the insulin secretion, dopaminergic synapse, and NF-kappa B signaling pathways. Several potential small-molecule compounds targeting ARGs were also identified.ConclusionOur results demonstrate that the ARGP-based model may be a promising prognostic indicator for identifying drug targets in patients with PAAD.


Sign in / Sign up

Export Citation Format

Share Document