scholarly journals On The Effect of Preprocessing Techniques For Evapotranspiration Estimation Using Soft Computing Methods

Author(s):  
Amin Amir-Ashayeri ◽  
Javad Behmanesh ◽  
Vahid Reza Verdinezhad ◽  
Nasrin Fathollahzadeh Attar

Abstract Implementing a reliable computational model for predicting the reference evapotranspiration (ET0) process is essential for several agricultural and hydrological applications, especially for the rural water resource systems, water use allocations, utilization and demand assessments, and the management of irrigation systems. In this research, two artificial intelligence (AI) models, artificial neural network (ANN) and model tree (MT), were investigated for modelling ET0. To validate model performance, five climatic stations such as Urmia, Mahabad, Takab, Khoy, and sardasht in West Azerbaijan Province of Iran. In the next step and to improve the model's accuracy, a novel preprocessing algorithm, ensemble empirical mode decomposition (EEMD), was coupled with those AI models to remove the trends or noise in the time series dataset. The extracted results indicated that the EEMD-MT model for all five stations outperformed other standalone and hybrid models.

Author(s):  
Fenghua Wen ◽  
Xin Yang ◽  
Xu Gong ◽  
Kin Keung Lai

Volatility of gold price is of great significance for avoiding the risk of gold investment. It is necessary to understand the effect of external events and intrinsic regularities to make accurate price predictions. This paper first compared EMD with CEEMD algorithm, and the results find that CEEMD algorithm performance is better than that of EMD in analysis gold price volatility. Then this paper uses the complementary ensemble empirical mode decomposition (CEEMD) to decompose the historical price of international gold into price components at different frequencies, and extracts a short-term fluctuation, a shock from significant events and a long-term price. In addition, this paper combines the Iterative cumulative sum of squares (ICSS) with Chow test to test the three event prices for structural breaks, and analyzes the effect of external events on volatility of gold price by comparing the external events with the test results for structural breaks. Finally, this paper constructs support vector machine (SVM) models and artificial neural network (ANN) on three series for prediction, and finds that the SVM performed better in gold price prediction in one-step-ahead and five-step-ahead, and when we combine the SVMs and ANNs with price components to make predictions, the error of the combined prediction is smaller than SVMs and ANNs with separate terms of series extracted.


2018 ◽  
Vol 36 (3) ◽  
pp. 411-425 ◽  
Author(s):  
Qing Zhu ◽  
Yiqiong Wu ◽  
Yuze Li ◽  
Jing Han ◽  
Xiaoyang Zhou

PurposeLibrary intelligence institutions, which are a kind of traditional knowledge management organization, are at the frontline of the big data revolution, in which the use of unstructured data has become a modern knowledge management resource. The paper aims to discuss this issue.Design/methodology/approachThis research combined theme logic structure (TLS), artificial neural network (ANN), and ensemble empirical mode decomposition (EEMD) to transform unstructured data into a signal-wave to examine the research characteristics.FindingsResearch characteristics have a vital effect on knowledge management activities and management behavior through concentration and relaxation, and ultimately form a quasi-periodic evolution. Knowledge management should actively control the evolution of the research characteristics because the natural development of six to nine years was found to be difficult to plot.Originality/valuePeriodic evaluation using TLS-ANN-EEMD gives insights into journal evolution and allows journal managers and contributors to follow the intrinsic mode functions and predict the journal research characteristics tendencies.


2020 ◽  
Vol 184 ◽  
pp. 01103
Author(s):  
Magudeaswaran. P ◽  
Vivek Kumar C ◽  
Britto Jeyakumar M S

High Performance Concrete (HPC) is the high quality concrete that requires special conformity and performance requirements. The objective of this study was to investigate the possibilities of adapting neural expert system like Artificial Neural Network (ANN) in the development of simulator and intelligent system and to predict durability and strength of HPC composites. This soft computing methods emulates the decision-making ability of a human expert benefits both the construction industry and the research community. These new methods, if properly utilized, have the potential to increase speed, service life, efficiency, consistency, minimizes errors, saves time and cost which would otherwise be squandered using the conventional approaches.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199811
Author(s):  
Beibei Li ◽  
Qiao Zhao ◽  
Huaiyi Li ◽  
Xiumei Liu ◽  
Jichao Ma ◽  
...  

To study the vibration characteristics of the poppet valve induced by cavitation, the signal analysis method based on the ensemble empirical mode decomposition (EEMD) method was studied experimentally. The component induced by cavitation was separated from the vibration signals through the EEMD method. The results show that the IMF2 component has the largest amplitude and energy of all components. The root mean square (RMS) value, peak value of marginal spectrum, and center frequency of marginal spectrum of the IMF2 component were studied in detail. The RMS value and the peak value of the marginal spectrum decrease with a decrease of cavitation intensity. The center frequency of marginal spectrum is between 12 kHz and 20 kHz, and the center frequency first increases and then decreases with a decrease of cavitation intensity. The change rate of the center frequency also decreases with an increase of inlet pressure.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2599
Author(s):  
Zhenbao Li ◽  
Wanlu Jiang ◽  
Sheng Zhang ◽  
Yu Sun ◽  
Shuqing Zhang

To address the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an integrated hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition (MEEMD), autoregressive (AR) spectrum energy, and wavelet kernel extreme learning machine (WKELM) methods is presented in this paper. First, the non-linear and non-stationary hydraulic pump vibration signals are decomposed into several intrinsic mode function (IMF) components by the MEEMD method. Next, AR spectrum analysis is performed for each IMF component, in order to extract the AR spectrum energy of each component as fault characteristics. Then, a hydraulic pump fault diagnosis model based on WKELM is built, in order to extract the features and diagnose faults of hydraulic pump vibration signals, for which the recognition accuracy reached 100%. Finally, the fault diagnosis effect of the hydraulic pump fault diagnosis method proposed in this paper is compared with BP neural network, support vector machine (SVM), and extreme learning machine (ELM) methods. The hydraulic pump fault diagnosis method presented in this paper can diagnose faults of single slipper wear, single slipper loosing and center spring wear type with 100% accuracy, and the fault diagnosis time is only 0.002 s. The results demonstrate that the integrated hydraulic pump fault diagnosis method based on MEEMD, AR spectrum, and WKELM methods has higher fault recognition accuracy and faster speed than existing alternatives.


Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


Sign in / Sign up

Export Citation Format

Share Document