A Novel Secured Euclidean Space Points Algorithm for Blind Spatial Image Watermarking

Author(s):  
Hedayath Basha Shaik ◽  
Jaison B

Abstract Digital raw images obtained from the data set of various organizations require authentication, copyright protection, and security with simple processing. New Euclidean space point’s algorithm is proposed to authenticate the images by embedding binary logos in the digital images in the spatial domain. Diffie–Hellman key exchange protocol is implemented along with the Euclidean space axioms to maintain security for the proposed work. The proposed watermarking methodology is tested on the standard set of raw grayscale and RGB color images. The watermarked images are sent in the email, WhatsApp, and Facebook and analyzed. Standard watermarking attacks are also applied to the watermarked images and analyzed. The finding shows that there are no image distortions in the communication medium of email and WhatsApp. But in the Facebook platform, raw images experience compression and observed exponential noise on the digital images. The authentication and copyright protection is tested from the processed Facebook images, it is found that the embedded logo could be recovered and seen with added noise distortions. So the proposed method offers authentication and security with compression attacks. Similarly, it is found that the proposed methodology is robust to JPEG compression, image tampering attacks like collage attack, image cropping, rotation, salt, and pepper noise, sharpening filter, semi-robust to Gaussian filtering, and image resizing, and fragile to other geometrical attacks. The receiver operating characteristics (ROC) curve is drawn and found that the area under the curve is approximately equal to unity and restoration accuracy of [67 to 100]% for various attacks.

2021 ◽  
Vol 7 (2) ◽  
pp. 356-362
Author(s):  
Harry Coppock ◽  
Alex Gaskell ◽  
Panagiotis Tzirakis ◽  
Alice Baird ◽  
Lyn Jones ◽  
...  

BackgroundSince the emergence of COVID-19 in December 2019, multidisciplinary research teams have wrestled with how best to control the pandemic in light of its considerable physical, psychological and economic damage. Mass testing has been advocated as a potential remedy; however, mass testing using physical tests is a costly and hard-to-scale solution.MethodsThis study demonstrates the feasibility of an alternative form of COVID-19 detection, harnessing digital technology through the use of audio biomarkers and deep learning. Specifically, we show that a deep neural network based model can be trained to detect symptomatic and asymptomatic COVID-19 cases using breath and cough audio recordings.ResultsOur model, a custom convolutional neural network, demonstrates strong empirical performance on a data set consisting of 355 crowdsourced participants, achieving an area under the curve of the receiver operating characteristics of 0.846 on the task of COVID-19 classification.ConclusionThis study offers a proof of concept for diagnosing COVID-19 using cough and breath audio signals and motivates a comprehensive follow-up research study on a wider data sample, given the evident advantages of a low-cost, highly scalable digital COVID-19 diagnostic tool.


In this paper, a novel dual image watermarking method is proposed to provide the copyright protection to digital images. In this proposed method, the lower and higher frequency subbands of the decomposed original image are modified by inserting the watermark information using different transforms. The implementation of a method that combines the visual cryptography with dual image watermarking to provide the security for the digital images during an exchange in open networks. The Arnold transform is used to encrypt the second watermark to employ the secure communication. Based on the proposed, the perceptibility and robustness of the distributed images can be increased. The original and watermarked images look like same and the PSNR and NCC are calculated for analyzing the system performance. This method is more robust and secure than existing methods


Cyber Crime ◽  
2013 ◽  
pp. 587-599
Author(s):  
Nikos Tsirakis

This chapter describes image watermarking, the most common and widespread category of media files are images. The evolution of the Internet and the ease by which images can be duplicated and distributed has led to the need for effective copyright protection tools and techniques in order to provide a secure way to the producers and the owners of these media files. These techniques are described below with an introduction to information hiding. Various software products have been introduced with an aim to address these growing concerns; some categories are presented here. The fundamental technique which allows an individual to add hidden copyright notices or other verification messages to digital images is called digital image watermarking and constitutes the main part of the chapter. Finally authors provide future trends and directions of image watermarking.


Author(s):  
Nikos Tsirakis

This chapter describes image watermarking, the most common and widespread category of media files are images. The evolution of the Internet and the ease by which images can be duplicated and distributed has led to the need for effective copyright protection tools and techniques in order to provide a secure way to the producers and the owners of these media files. These techniques are described below with an introduction to information hiding. Various software products have been introduced with an aim to address these growing concerns; some categories are presented here. The fundamental technique which allows an individual to add hidden copyright notices or other verification messages to digital images is called digital image watermarking and constitutes the main part of the chapter. Finally authors provide future trends and directions of image watermarking.


BMJ Open ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. e042941
Author(s):  
Vanja Milosevic ◽  
Aimee Linkens ◽  
Bjorn Winkens ◽  
Kim P G M Hurkens ◽  
Dennis Wong ◽  
...  

ObjectivesTo develop (part I) and validate (part II) an electronic fall risk clinical rule (CR) to identify nursing home residents (NH-residents) at risk for a fall incident.DesignObservational, retrospective case–control study.SettingNursing homes.ParticipantsA total of 1668 (824 in part I, 844 in part II) NH-residents from the Netherlands were included. Data of participants from part I were excluded in part II.Primary and secondary outcome measuresDevelopment and validation of a fall risk CR in NH-residents. Logistic regression analysis was conducted to identify the fall risk-variables in part I. With these, three CRs were developed (ie, at the day of the fall incident and 3 days and 5 days prior to the fall incident). The overall prediction quality of the CRs were assessed using the area under the receiver operating characteristics (AUROC), and a cut-off value was determined for the predicted risk ensuring a sensitivity ≥0.85. Finally, one CR was chosen and validated in part II using a new retrospective data set.ResultsEleven fall risk-variables were identified in part I. The AUROCs of the three CRs form part I were similar: the AUROC for models I, II and III were 0.714 (95% CI: 0.679 to 0.748), 0.715 (95% CI: 0.680 to 0.750) and 0.709 (95% CI: 0.674 to 0.744), respectively. Model III (ie, 5 days prior to the fall incident) was chosen for validation in part II. The validated AUROC of the CR, obtained in part II, was 0.603 (95% CI: 0.565 to 0.641) with a sensitivity of 83.41% (95% CI: 79.44% to 86.76%) and a specificity of 27.25% (95% CI 23.11% to 31.81%).ConclusionMedication data and resident characteristics alone are not sufficient enough to develop a successful CR with a high sensitivity and specificity to predict fall risk in NH-residents.Trial registration numberNot available.


Author(s):  
Weiguo Cao ◽  
Marc J. Pomeroy ◽  
Yongfeng Gao ◽  
Matthew A. Barish ◽  
Almas F. Abbasi ◽  
...  

AbstractTexture features have played an essential role in the field of medical imaging for computer-aided diagnosis. The gray-level co-occurrence matrix (GLCM)-based texture descriptor has emerged to become one of the most successful feature sets for these applications. This study aims to increase the potential of these features by introducing multi-scale analysis into the construction of GLCM texture descriptor. In this study, we first introduce a new parameter - stride, to explore the definition of GLCM. Then we propose three multi-scaling GLCM models according to its three parameters, (1) learning model by multiple displacements, (2) learning model by multiple strides (LMS), and (3) learning model by multiple angles. These models increase the texture information by introducing more texture patterns and mitigate direction sparsity and dense sampling problems presented in the traditional Haralick model. To further analyze the three parameters, we test the three models by performing classification on a dataset of 63 large polyp masses obtained from computed tomography colonoscopy consisting of 32 adenocarcinomas and 31 benign adenomas. Finally, the proposed methods are compared to several typical GLCM-texture descriptors and one deep learning model. LMS obtains the highest performance and enhances the prediction power to 0.9450 with standard deviation 0.0285 by area under the curve of receiver operating characteristics score which is a significant improvement.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniela Meiser ◽  
Lale Kayikci ◽  
Matthias Orth

AbstractObjectivesDiagnosing disturbances in iron metabolism can be challenging when accompanied by inflammation. New diagnostic tools such as the “Thomas-plot” (TP) (relation of soluble transferrin receptor [sTfR]/log ferritin to reticulocyte hemoglobin content [RET-He]) were established to improve classification of anemias. Aim of this retrospective study was to assess the added diagnostic value of the TP in anemia work up.MethodsPatients from December 2016 to September 2018 with a complete blood count, iron status, RET-He and sTfR were manually classified into the four quadrants of the TP on basis of conventional iron markers. Manual and algorithm-based classifications were compared using cross tabulations, Box–Whisker-Plots as well as Receiver-Operating-Characteristics (ROC) to calculate the diagnostic accuracy using Area under the Curve (AUC) analysis.ResultsA total of 3,745 patients with a conventional iron status, including 1,721 TPs, could be evaluated. In 70% of the cases the manual classification was identical to the TP, in 10% it was deviant. 20% could not clearly be classified, mostly due to inflammatory conditions. In the absence of an inflammatory condition, ferritin was a reliable parameter to define iron deficiency (ID) (AUC 0.958). In the presence of inflammation, the significance of the ferritin index (AUC 0.917) and of the RET-He (AUC 0.957) increased.ConclusionsThe TP can be useful for narrowing down the causes of anemia in complex cases. Further studies with focus on special patient groups, e.g., oncological or rheumatic patients, are desirable.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 255
Author(s):  
Mario Gonzalez-Lee ◽  
Hector Vazquez-Leal ◽  
Luis J. Morales-Mendoza ◽  
Mariko Nakano-Miyatake ◽  
Hector Perez-Meana ◽  
...  

In this paper, we explore the advantages of a fractional calculus based watermarking system for detecting Gaussian watermarks. To reach this goal, we selected a typical watermarking scheme and replaced the detection equation set by another set of equations derived from fractional calculus principles; then, we carried out a statistical assessment of the performance of both schemes by analyzing the Receiver Operating Characteristic (ROC) curve and the False Positive Percentage (FPP) when they are used to detect Gaussian watermarks. The results show that the ROC of a fractional equation based scheme has 48.3% more Area Under the Curve (AUC) and a False Positives Percentage median of 0.2% whilst the selected typical watermarking scheme has 3%. In addition, the experimental results suggest that the target applications of fractional schemes for detecting Gaussian watermarks are as a semi-fragile image watermarking systems robust to Gaussian noise.


2020 ◽  
pp. archdischild-2020-320549
Author(s):  
Fang Hu ◽  
Shuai-Jun Guo ◽  
Jian-Jun Lu ◽  
Ning-Xuan Hua ◽  
Yan-Yan Song ◽  
...  

BackgroundDiagnosis of congenital syphilis (CS) is not straightforward and can be challenging. This study aimed to evaluate the validity of an algorithm using timing of maternal antisyphilis treatment and titres of non-treponemal antibody as predictors of CS.MethodsConfirmed CS cases and those where CS was excluded were obtained from the Guangzhou Prevention of Mother-to-Child Transmission of syphilis programme between 2011 and 2019. We calculated sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) using receiver operating characteristics (ROC) in two situations: (1) receiving antisyphilis treatment or no-treatment during pregnancy and (2) initiating treatment before 28 gestational weeks (GWs), initiating after 28 GWs or receiving no treatment for syphilis seropositive women.ResultsAmong 1558 syphilis-exposed children, 39 had confirmed CS. Area under the curve, sensitivity and specificity of maternal non-treponemal titres before treatment and treatment during pregnancy were 0.80, 76.9%, 78.7% and 0.79, 69.2%, 88.7%, respectively, for children with CS. For the algorithm, ROC results showed that PPV and NPV for predicting CS were 37.3% and 96.4% (non-treponemal titres cut-off value 1:8 and no antisyphilis treatment), 9.4% and 100% (non-treponemal titres cut-off value 1:16 and treatment after 28 GWs), 4.2% and 99.5% (non-treponemal titres cut-off value 1:32 and treatment before 28 GWs), respectively.ConclusionsAn algorithm using maternal non-treponemal titres and timing of treatment during pregnancy could be an effective strategy to diagnose or rule out CS, especially when the rate of loss to follow-up is high or there are no straightforward diagnostic tools.


Sign in / Sign up

Export Citation Format

Share Document