scholarly journals Greenland's thaw pushes the biodiversity crisis

Author(s):  
Carolina Ureta ◽  
Santiago Ramírez-Barahona ◽  
Óscar Calderón-Bustamante ◽  
Pedro Cruz-Santiago ◽  
Carlos Gay ◽  
...  

Abstract Global warming1, is reshaping the distribution of biodiversity across the world and can lead to the occurrence of large-scale singular events, such as the melting of polar ice sheets2,3. The potential impacts of such a melting event on species persistence across taxonomic groups – in terms of magnitude and geographic extent – remain unexplored. Here we assess impacts on biodiversity of global warming and melting of Greenland’s ice sheet on the distribution of 21,146 species of vascular plants and tetrapods across twelve megadiverse countries. We show that high global warming would lead to widespread reductions in species’ geographic ranges (median range loss, 35–78%), which are magnified (median range loss, 95–99%) with the added contribution of Greenland’s melting and its potentially large impact on oceanic circulation and regional climate changes. Our models project a decline in the geographical extent of species hotspots across countries (median reduction, 48–95%) and a substantial alteration of species composition in the near future (mean temporal dissimilarity, 0.26–0.89). These results imply that, in addition to global warming, the influence of Greenland’s melting can lead to the collapse of biodiversity across the globe, providing an added domino in its cascading effects.

2021 ◽  
Author(s):  
Carolina Ureta ◽  
Santiago Ramirez-Barahona ◽  
Oscar Calderon-Bustamante ◽  
Pedro Cruz-Santiago ◽  
Carlos Gay-Garcia ◽  
...  

Anthropogenic greenhouse gas emissions have led to sustained global warming over the last decades1. This is already reshaping the distribution of biodiversity across the world and can lead to the occurrence of large-scale singular events, such as the melting of polar ice sheets2,3. The potential impacts of such a melting event on species persistence across taxonomic groups — in terms of magnitude and geographic extent — remain unexplored. Here we assess impacts on biodiversity of global warming and melting of Greenland's ice sheet on the distribution of 21,146 species of vascular plants and tetrapods across twelve megadiverse countries. We show that high global warming would lead to widespread reductions in species' geographic ranges (median range loss, 35–78%), which are magnified (median range loss, 95–99%) with the added contribution of Greenland's melting and its potentially large impact on oceanic circulation and regional climate changes. Our models project a decline in the geographical extent of species hotspots across countries (median reduction, 48–95%) and a substantial alteration of species composition in the near future (mean temporal dissimilarity, 0.26–0.89). These results imply that, in addition to global warming, the influence of Greenland's melting can lead to the collapse of biodiversity across the globe, providing an added domino in its cascading effects.


2016 ◽  
Vol 86 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Maximilian Benedict Mandl ◽  
Bryan Nolan Shuman ◽  
Jeremiah Marsicek ◽  
Laurie Grigg

AbstractWe present a new oxygen isotope (δ18O) record from carbonate-rich lake sediments from central Vermont. The record from Twin Ponds spans from 13.5 cal ka BP (1950 AD) to present, but contains a 6 ka long hiatus starting shortly after 7.5 cal ka BP. We compare the record for ca. 13.5–7.5 cal ka BP with published δ18O data from the region after using a Bayesian approach to produce many possible chronologies for each site. Principal component analysis then identified chronologically-robust, multi-site oxygen isotope signals, including negative values during the Younger Dryas, but no significant deviations from the early Holocene mean of the regional records. However, differences among sites indicate significant trends that likely relate to interacting changes in the regional gradients of seasonal temperatures and precipitation as well as moisture sources, moisture pathways, and aridity that were controlled by large-scale climatic controls such as insolation, the progressive decline of the Laurentide Ice Sheet, and changes in oceanic circulation. Centennial shifts punctuate these trends at ca. 9.3 and 8.2 cal ka BP, and reveal that the local character of these short-lived features requires a detailed understanding of lake hydrology and regional isotopic gradients to yield reliable information for regional climate reconstructions.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 214
Author(s):  
Sun-Hee Lee ◽  
Jiang-Shiou Hwang ◽  
Kyoung Yeon Kim ◽  
Juan Carlos Molinero

The East Asian marginal seas are among the most productive fisheries grounds. However, in recent decades they experienced massive proliferations of jellyfish that pose vast challenges for the management of harvested fish stocks. In the Korean Peninsula, the common bloom-formers Scyphozoan species Aurelia coerulea and Nemopilema nomurai are of major concern due to their detrimental effects on coastal socio-ecological systems. Here, we used pluriannual field observations spanning over 14 years to test the extent of climate influence on the interannual variability and bloom dynamics of A. coerulea and N. nomurai. To depict climate-jellyfish interactions we assessed partitioning effects, direct/indirect links, and the relative importance of hydroclimate forces on the variability of these species. We show that jellyfish interannual patterns and bloom dynamics are shaped by forces playing out at disparate scales. While abundance changes and earlier blooms of A. coerulea were driven by local environmental conditions, N. nomurai interannual patterns and bloom dynamics were linked with regional climate processes. Our results provide a synoptic picture of cascading effects from large scale climate to jellyfish dynamics in the Korean Peninsula that may affect fisheries sustainability due to the prominent detrimental impact these species have in the region.


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2000 ◽  
Vol 151 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Stephan Wild-Eck ◽  
Willi Zimmermann

Two large-scale surveys looking at attitudes towards forests, forestry and forest policy in the second half ofthe nineties have been carried out. This work was done on behalf of the Swiss Confederation by the Chair of Forest Policy and Forest Economics of the Federal Institute of Technology (ETH) in Zurich. Not only did the two studies use very different methods, but the results also varied greatly as far as infrastructure and basic conditions were concerned. One of the main differences between the two studies was the fact that the first dealt only with mountainous areas, whereas the second was carried out on the whole Swiss population. The results of the studies reflect these differences:each produced its own specific findings. Where the same (or similar) questions were asked, the answers highlight not only how the attitudes of those questioned differ, but also views that they hold in common. Both surveys showed positive attitudes towards forests in general, as well as a deep-seated appreciation ofthe forest as a recreational area, and a positive approach to tending. Detailed results of the two surveys will be available in the near future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah Hayer ◽  
Dirk Brandis ◽  
Alexander Immel ◽  
Julian Susat ◽  
Montserrat Torres-Oliva ◽  
...  

AbstractThe historical phylogeography of Ostrea edulis was successfully depicted in its native range for the first time using ancient DNA methods on dry shells from museum collections. This research reconstructed the historical population structure of the European flat oyster across Europe in the 1870s—including the now extinct population in the Wadden Sea. In total, four haplogroups were identified with one haplogroup having a patchy distribution from the North Sea to the Atlantic coast of France. This irregular distribution could be the result of translocations. The other three haplogroups are restricted to narrow geographic ranges, which may indicate adaptation to local environmental conditions or geographical barriers to gene flow. The phylogenetic reconstruction of the four haplogroups suggests the signatures of glacial refugia and postglacial expansion. The comparison with present-day O. edulis populations revealed a temporally stable population genetic pattern over the past 150 years despite large-scale translocations. This historical phylogeographic reconstruction was able to discover an autochthonous population in the German and Danish Wadden Sea in the late nineteenth century, where O. edulis is extinct today. The genetic distinctiveness of a now-extinct population hints at a connection between the genetic background of O. edulis in the Wadden Sea and for its absence until today.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
JiJi Fan ◽  
Zhong-Zhi Xianyu

Abstract Light fields with spatially varying backgrounds can modulate cosmic preheating, and imprint the nonlinear effects of preheating dynamics at tiny scales on large scale fluctuations. This provides us a unique probe into the preheating era which we dub the “cosmic microscope”. We identify a distinctive effect of preheating on scalar perturbations that turns the Gaussian primordial fluctuations of a light scalar field into square waves, like a diode. The effect manifests itself as local non-Gaussianity. We present a model, “modulated partial preheating”, where this nonlinear effect is consistent with current observations and can be reached by near future cosmic probes.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1422
Author(s):  
Ousama Al Shanaa ◽  
Andrey Rumyantsev ◽  
Elena Sambuk ◽  
Marina Padkina

RNA aptamers are becoming increasingly attractive due to their superior properties. This review discusses the early stages of aptamer research, the main developments in this area, and the latest technologies being developed. The review also highlights the advantages of RNA aptamers in comparison to antibodies, considering the great potential of RNA aptamers and their applications in the near future. In addition, it is shown how RNA aptamers can form endless 3-D structures, giving rise to various structural and functional possibilities. Special attention is paid to the Mango, Spinach and Broccoli fluorescent RNA aptamers, and the advantages of split RNA aptamers are discussed. The review focuses on the importance of creating a platform for the synthesis of RNA nanoparticles in vivo and examines yeast, namely Saccharomyces cerevisiae, as a potential model organism for the production of RNA nanoparticles on a large scale.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 551
Author(s):  
Sofia Spyridonidou ◽  
Georgia Sismani ◽  
Eva Loukogeorgaki ◽  
Dimitra G. Vagiona ◽  
Hagit Ulanovsky ◽  
...  

In this work, an innovative sustainable spatial energy planning framework is developed on national scale for identifying and prioritizing appropriate, technically and economically feasible, environmentally sustainable as well as socially acceptable sites for the siting of large-scale onshore Wind Farms (WFs) and Photovoltaic Farms (PVFs) in Israel. The proposed holistic framework consists of distinctive steps allocated in two successive modules (the Planning and the Field Investigation module), and it covers all relevant dimensions of a sustainable siting analysis (economic, social, and environmental). It advances a collaborative and participatory planning approach by combining spatial planning tools (Geographic Information Systems (GIS)) and multi-criteria decision-making methods (e.g., Analytical Hierarchy Process (AHP)) with versatile participatory planning techniques in order to consider the opinion of three different participatory groups (public, experts, and renewable energy planners) within the site-selection processes. Moreover, it facilitates verification of GIS results by conducting appropriate field observations. Sites of high suitability, accepted by all participatory groups and field verified, form the final outcome of the proposed framework. The results illustrate the existence of high suitable sites for large-scale WFs’ and PVFs’ siting and, thus, the potential deployment of such projects towards the fulfillment of the Israeli energy targets in the near future.


Sign in / Sign up

Export Citation Format

Share Document