scholarly journals Effective Properties of Semitransparent Radiative Cooling Materials With Spectrally Variable Properties

Author(s):  
Ravi Anant Kishore ◽  
Chuck Booten ◽  
Sajith Wijesuriya

Abstract Radiation cooling is a promising solid-state, non-vapor-compression technology for passive refrigeration and air conditioning. Although this phenomenon occurs naturally, achieving a significant amount of cooling to make it a technically and economically viable technology requires highly engineered, spectrally selective radiative surfaces. These characteristics make radiation cooling difficult to estimate, particularly when it is integrated with other systems such as photovoltaic panels or building envelopes. The complexity further increases when the substrate also participates in the radiative cooling (along with the radiative coating). Energy estimation is becoming increasingly critical because of the recent focus on the semitransparent radiative coatings that transmit a variety of colors to enhance the aesthetic appeal of the system. Here, we propose a simple iterative method to calculate the effective radiative properties, which provide the same net radiative cooling that would be observed using the spectral properties at both the coating and substrate surfaces. Compared to traditional methods that rely on either computationally expensive full spectral analysis or methods for averaging each radiative surface parameter locally, our proposed method focuses on calculating effective properties that provide the same the net cooling effect as a full spectral analysis by accounting the emissivity, absorptivity, and transmissivity collectively, thereby providing an overall estimation error of less than 0.2%. We believe that this study will be beneficial to the engineering communities that employ complex simulation codes and require lumped solar and thermal radiation related parameters.

2020 ◽  
Vol 499 (3) ◽  
pp. 3178-3192
Author(s):  
D Yoon ◽  
K Chatterjee ◽  
S B Markoff ◽  
D van Eijnatten ◽  
Z Younsi ◽  
...  

ABSTRACT The candidate supermassive black hole in the Galactic Centre, Sagittarius A* (Sgr A*), is known to be fed by a radiatively inefficient accretion flow (RIAF), inferred by its low accretion rate. Consequently, radiative cooling has in general been overlooked in the study of Sgr A*. However, the radiative properties of the plasma in RIAFs are poorly understood. In this work, using full 3D general–relativistic magnetohydrodynamical simulations, we study the impact of radiative cooling on the dynamical evolution of the accreting plasma, presenting spectral energy distributions and synthetic sub-millimetre images generated from the accretion flow around Sgr A*. These simulations solve the approximated equations for radiative cooling processes self-consistently, including synchrotron, bremsstrahlung, and inverse Compton processes. We find that radiative cooling plays an increasingly important role in the dynamics of the accretion flow as the accretion rate increases: the mid-plane density grows and the infalling gas is less turbulent as cooling becomes stronger. The changes in the dynamical evolution become important when the accretion rate is larger than $10^{-8}\, M_{\odot }~{\rm yr}^{-1}$ ($\gtrsim 10^{-7} \dot{M}_{\rm Edd}$, where $\dot{M}_{\rm Edd}$ is the Eddington accretion rate). The resulting spectra in the cooled models also differ from those in the non-cooled models: the overall flux, including the peak values at the sub-mm and the far-UV, is slightly lower as a consequence of a decrease in the electron temperature. Our results suggest that radiative cooling should be carefully taken into account in modelling Sgr A* and other low-luminosity active galactic nuclei that have a mass accretion rate of $\dot{M} \gt 10^{-7}\, \dot{M}_{\rm Edd}$.


2005 ◽  
Vol 62 (4) ◽  
pp. 1241-1254 ◽  
Author(s):  
Kuan-Man Xu

Abstract This study examines the sensitivity of diagnosed radiative fluxes and heating rates to different treatments of cloud microphysics among cloud-resolving models (CRMs). The domain-averaged CRM outputs are used in this calculation. The impacts of the cloud overlap and uniform hydrometeor assumptions are examined using outputs having spatially varying cloud fields from a single CRM. It is found that the cloud overlap assumption impacts the diagnosis more significantly than the uniform hydrometeor assumption for all radiative fluxes. This is also the case for the longwave radiative cooling rate except for a layer above 7 km where it is more significantly impacted by the uniform hydrometeor assumption. The radiative cooling above upper-tropospheric anvils and the warming below these clouds are overestimated by about 0.5 K day−1 using the domain-averaged outputs. These results are used to further quantify intermodel differences in radiative properties due to different treatments of cloud microphysics among 10 CRMs. The magnitudes of the intermodel differences, as measured by the deviations from the consensus of 10 CRMs, are found to be smaller than those due to the cloud overlap assumption and comparable to those due to the uniform hydrometeor assumption for most shortwave radiative fluxes and the net radiative fluxes at the top of the atmosphere (TOA) and at the surface. For all longwave radiative fluxes, they are smaller than those due to cloud overlap and uniform hydrometeor assumptions. The consensus of all diagnosed radiative fluxes except for the surface downward shortwave flux agrees with observations to a degree that is close to the uncertainties of satellite- and ground-based measurements.


2019 ◽  
Vol 6 (1) ◽  
pp. 31-34 ◽  
Author(s):  
P. Corfdir ◽  
G. Lantz ◽  
M. Abplanalp ◽  
T. Delachaux ◽  
F. Kassubek ◽  
...  

We study the impact of Stark line shifts reported recently for Cu I transitions on the radiative cooling of Cu-dominated plasmas. The observed detuning in absorption between the hot core and cold shell of the arc leads to a reduction in radiation reabsorption compared to the case where Stark line shifts are neglected. Using a modeling based on a phenomenological treatment of the Stark line shift, we show that this reduction is below 2%.


2021 ◽  
Vol 10 (38) ◽  
pp. 11-20
Author(s):  
Thays Maria Veiga da Silva Ângelos ◽  
Johanna Cuadros-Sanchez ◽  
Rodrigo Ehlers Ilkiu ◽  
Cristian Higashi ◽  
Antonio S. Sakamoto Junior

Achieving aesthetic and functional result is a major challenge in oral rehabilitation, as the constant search for a harmonic smile raises patients level of demand and expectation. Restoring anterior teeth with aesthetics and predictability is one of the greatest challenges in contemporary dentistry and to know how to select the most suitable ceramic system and to have knowledge, controlling the variables at the time of adhesive cementation such as treatment of dental substrate surfaces and ceramic restoration will define the longevity and success of the restorative treatment. Therefore, the present article describes a rehabilitation with ceramic restorations on upper anterior teeth, seeking smile harmonization. It was emphasized clinical applicability in face of aesthetic challenge for different substrates, how to achieve predictable results with ceramic laminates associated with the lithium disilicate crown, and a crown with zirconia coping and laminate on it to mask the implant. This material presents excellent reproduction of dental structure optical properties in addition to high fracture resistance. A very pleasant aesthetic result was achieved, and also aesthetic harmonization of the rehabilitated teeth, restoring not only the aesthetic and saturation of the substrate, but promoting patient well-being associated with masticatory function and longevity for this clinical situation.


2005 ◽  
Vol 256 (1-3) ◽  
pp. 10-15 ◽  
Author(s):  
M. Benlattar ◽  
E.M. Oualim ◽  
M. Harmouchi ◽  
A. Mouhsen ◽  
A. Belafhal

Author(s):  
C. S. Giggins ◽  
J. K. Tien ◽  
B. H. Kear ◽  
F. S. Pettit

The performance of most oxidation resistant alloys and coatings is markedly improved if the oxide scale strongly adheres to the substrate surface. Consequently, in order to develop alloys and coatings with improved oxidation resistance, it has become necessary to determine the conditions that lead to spallation of oxides from the surfaces of alloys. In what follows, the morphological features of nonadherent Al2O3, and the substrate surfaces from which the Al2O3 has spalled, are presented and related to oxide spallation.The Al2O3, scales were developed by oxidizing Fe-25Cr-4Al (w/o) and Ni-rich Ni3 (Al,Ta) alloys in air at 1200°C. These scales spalled from their substrates upon cooling as a result of thermally induced stresses. The scales and the alloy substrate surfaces were then examined by scanning and replication electron microscopy.The Al2O3, scales from the Fe-Cr-Al contained filamentary protrusions at the oxide-gas interface, Fig. 1(a). In addition, nodules of oxide have been developed such that cavities were formed between the oxide and the substrate, Fig. 1(a).


Sign in / Sign up

Export Citation Format

Share Document