scholarly journals Brain CT Registration Using Hybrid Supervised Convolutional Neural Network

Author(s):  
Hongmei Yuan ◽  
MingLei Yang ◽  
Shan Qian ◽  
WenXin Wang ◽  
XiaoTian Jia ◽  
...  

Abstract Background: Brain computed tomography (CT) image registration is an essential step in the image evaluation of acute cerebrovascular disease (ACVD). Due to the complexity of human brain morphology, low brain CT soft-tissue resolution, low gray/white matter contrast, and the large anatomy variation across individuals, it is still a great challenge to perform brain CT registration accurately and rapidly. This study developed a hybrid supervised convolutional neural network (HSCN-Net) which may be used for assessment of ACVD in brain CT.Method: HSCN-Net generates synthetic deformation fields by a simulator to solve the lack of registration gold standard. The simulator are used to generate multi-scale deformation fields to overcome the registration challenge of large deformation. HSCN-Net adopts a hybrid loss function constituted by deformation field and image similarity to improve registration accuracy and generalization ability. In this work, one hundred and one brain CT images were included for HSCN-Net training and evaluation, and the results were compared with Demons and VoxelMorph. Qualitative analysis by visual evaluation, as well as quantitative analysis by Endpoint Error (EPE) between deformation fields, image Normalized Mutual Information (NMI), and Dice coefficient were carried out to access the model performance.Results: Qualitative analysis of HSCN-Net was similar to that of Demons, and both were superior to that of VoxelMorph. Moreover, HSCN-Net was more competent for large and smooth deformations. For quantitative evaluation, the EPE mean of HSCN-Net (3.29 mm) was lower than that of Demons (3.47 mm) and VoxelMorph (5.12 mm); the Dice mean of HSCN-Net was 0.96, which was better than that of Demons (0.90) and VoxelMorph (0.87); and the NMI mean of HSCN-Net (0.83) was slightly lower than that of Demons(0.84) but higher than that of VoxelMorph (0.81). In addition, the mean registration time of HSCN-Net (17.86 s) was lower than that of VoxelMorph (18.53 s) and Demons (147.21 s).Conclusion: The proposed hybrid supervised convolution registration network can achieve accurate and rapid brain CT registration. It is helpful for improving image evaluation of ACVD, thereby assisting clinicians in diagnosis and treatment decision-making.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Hongmei Yuan ◽  
Minglei Yang ◽  
Shan Qian ◽  
Wenxin Wang ◽  
Xiaotian Jia ◽  
...  

Abstract Background Image registration is an essential step in the automated interpretation of the brain computed tomography (CT) images of patients with acute cerebrovascular disease (ACVD). However, performing brain CT registration accurately and rapidly remains greatly challenging due to the large intersubject anatomical variations, low resolution of soft tissues, and heavy computation costs. To this end, the HSCN-Net, a hybrid supervised convolutional neural network, was developed for precise and fast brain CT registration. Method HSCN-Net generated synthetic deformation fields using a simulator as one supervision for one reference–moving image pair to address the problem of lack of gold standards. Furthermore, the simulator was designed to generate multiscale affine and elastic deformation fields to overcome the registration challenge posed by large intersubject anatomical deformation. Finally, HSCN-Net adopted a hybrid loss function constituted by deformation field and image similarity to improve registration accuracy and generalization capability. In this work, 101 CT images of patients were collected for model construction (57), evaluation (14), and testing (30). HSCN-Net was compared with the classical Demons and VoxelMorph models. Qualitative analysis through the visual evaluation of critical brain tissues and quantitative analysis by determining the endpoint error (EPE) between the predicted sparse deformation vectors and gold-standard sparse deformation vectors, image normalized mutual information (NMI), and the Dice coefficient of the middle cerebral artery (MCA) blood supply area were carried out to assess model performance comprehensively. Results HSCN-Net and Demons had a better visual spatial matching performance than VoxelMorph, and HSCN-Net was more competent for smooth and large intersubject deformations than Demons. The mean EPE of HSCN-Net (3.29 mm) was less than that of Demons (3.47 mm) and VoxelMorph (5.12 mm); the mean Dice of HSCN-Net was 0.96, which was higher than that of Demons (0.90) and VoxelMorph (0.87); and the mean NMI of HSCN-Net (0.83) was slightly lower than that of Demons (0.84), but higher than that of VoxelMorph (0.81). Moreover, the mean registration time of HSCN-Net (17.86 s) was shorter than that of VoxelMorph (18.53 s) and Demons (147.21 s). Conclusion The proposed HSCN-Net could achieve accurate and rapid intersubject brain CT registration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1688
Author(s):  
Luqman Ali ◽  
Fady Alnajjar ◽  
Hamad Al Jassmi ◽  
Munkhjargal Gochoo ◽  
Wasif Khan ◽  
...  

This paper proposes a customized convolutional neural network for crack detection in concrete structures. The proposed method is compared to four existing deep learning methods based on training data size, data heterogeneity, network complexity, and the number of epochs. The performance of the proposed convolutional neural network (CNN) model is evaluated and compared to pretrained networks, i.e., the VGG-16, VGG-19, ResNet-50, and Inception V3 models, on eight datasets of different sizes, created from two public datasets. For each model, the evaluation considered computational time, crack localization results, and classification measures, e.g., accuracy, precision, recall, and F1-score. Experimental results demonstrated that training data size and heterogeneity among data samples significantly affect model performance. All models demonstrated promising performance on a limited number of diverse training data; however, increasing the training data size and reducing diversity reduced generalization performance, and led to overfitting. The proposed customized CNN and VGG-16 models outperformed the other methods in terms of classification, localization, and computational time on a small amount of data, and the results indicate that these two models demonstrate superior crack detection and localization for concrete structures.


Author(s):  
Robert J. O’Shea ◽  
Amy Rose Sharkey ◽  
Gary J. R. Cook ◽  
Vicky Goh

Abstract Objectives To perform a systematic review of design and reporting of imaging studies applying convolutional neural network models for radiological cancer diagnosis. Methods A comprehensive search of PUBMED, EMBASE, MEDLINE and SCOPUS was performed for published studies applying convolutional neural network models to radiological cancer diagnosis from January 1, 2016, to August 1, 2020. Two independent reviewers measured compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Compliance was defined as the proportion of applicable CLAIM items satisfied. Results One hundred eighty-six of 655 screened studies were included. Many studies did not meet the criteria for current design and reporting guidelines. Twenty-seven percent of studies documented eligibility criteria for their data (50/186, 95% CI 21–34%), 31% reported demographics for their study population (58/186, 95% CI 25–39%) and 49% of studies assessed model performance on test data partitions (91/186, 95% CI 42–57%). Median CLAIM compliance was 0.40 (IQR 0.33–0.49). Compliance correlated positively with publication year (ρ = 0.15, p = .04) and journal H-index (ρ = 0.27, p < .001). Clinical journals demonstrated higher mean compliance than technical journals (0.44 vs. 0.37, p < .001). Conclusions Our findings highlight opportunities for improved design and reporting of convolutional neural network research for radiological cancer diagnosis. Key Points • Imaging studies applying convolutional neural networks (CNNs) for cancer diagnosis frequently omit key clinical information including eligibility criteria and population demographics. • Fewer than half of imaging studies assessed model performance on explicitly unobserved test data partitions. • Design and reporting standards have improved in CNN research for radiological cancer diagnosis, though many opportunities remain for further progress.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Cheng-Jian Lin ◽  
Chun-Hui Lin ◽  
Shyh-Hau Wang

Deep learning has accomplished huge success in computer vision applications such as self-driving vehicles, facial recognition, and controlling robots. A growing need for deploying systems on resource-limited or resource-constrained environments such as smart cameras, autonomous vehicles, robots, smartphones, and smart wearable devices drives one of the current mainstream developments of convolutional neural networks: reducing model complexity but maintaining fine accuracy. In this study, the proposed efficient light convolutional neural network (ELNet) comprises three convolutional modules which perform ELNet using fewer computations, which is able to be implemented in resource-constrained hardware equipment. The classification task using CIFAR-10 and CIFAR-100 datasets was used to verify the model performance. According to the experimental results, ELNet reached 92.3% and 69%, respectively, in CIFAR-10 and CIFAR-100 datasets; moreover, ELNet effectively lowered the computational complexity and parameters required in comparison with other CNN architectures.


Author(s):  
Carla Sendra-Balcells ◽  
Ricardo Salvador ◽  
Juan B. Pedro ◽  
M C Biagi ◽  
Charlène Aubinet ◽  
...  

AbstractThe segmentation of structural MRI data is an essential step for deriving geometrical information about brain tissues. One important application is in transcranial electrical stimulation (e.g., tDCS), a non-invasive neuromodulatory technique where head modeling is required to determine the electric field (E-field) generated in the cortex to predict and optimize its effects. Here we propose a deep learning-based model (StarNEt) to automatize white matter (WM) and gray matter (GM) segmentation and compare its performance with FreeSurfer, an established tool. Since good definition of sulci and gyri in the cortical surface is an important requirement for E-field calculation, StarNEt is specifically designed to output masks at a higher resolution than that of the original input T1w-MRI. StarNEt uses a residual network as the encoder (ResNet) and a fully convolutional neural network with U-net skip connections as the decoder to segment an MRI slice by slice. Slice vertical location is provided as an extra input. The model was trained on scans from 425 patients in the open-access ADNI+IXI datasets, and using FreeSurfer segmentation as ground truth. Model performance was evaluated using the Dice Coefficient (DC) in a separate subset (N=105) of ADNI+IXI and in two extra testing sets not involved in training. In addition, FreeSurfer and StarNEt were compared to manual segmentations of the MRBrainS18 dataset, also unseen by the model. To study performance in real use cases, first, we created electrical head models derived from the FreeSurfer and StarNEt segmentations and used them for montage optimization with a common target region using a standard algorithm (Stimweaver) and second, we used StarNEt to successfully segment the brains of minimally conscious state (MCS) patients having suffered from brain trauma, a scenario where FreeSurfer typically fails. Our results indicate that StarNEt matches FreeSurfer performance on the trained tasks while reducing computation time from several hours to a few seconds, and with the potential to evolve into an effective technique even when patients present large brain abnormalities.


2019 ◽  
Vol 60 (5) ◽  
pp. 685-693 ◽  
Author(s):  
Tomohiro Kajikawa ◽  
Noriyuki Kadoya ◽  
Kengo Ito ◽  
Yoshiki Takayama ◽  
Takahito Chiba ◽  
...  

Abstract The purpose of the study was to compare a 3D convolutional neural network (CNN) with the conventional machine learning method for predicting intensity-modulated radiation therapy (IMRT) dose distribution using only contours in prostate cancer. In this study, which included 95 IMRT-treated prostate cancer patients with available dose distributions and contours for planning target volume (PTVs) and organs at risk (OARs), a supervised-learning approach was used for training, where the dose for a voxel set in the dataset was defined as the label. The adaptive moment estimation algorithm was employed for optimizing a 3D U-net similar network. Eighty cases were used for the training and validation set in 5-fold cross-validation, and the remaining 15 cases were used as the test set. The predicted dose distributions were compared with the clinical dose distributions, and the model performance was evaluated by comparison with RapidPlan™. Dose–volume histogram (DVH) parameters were calculated for each contour as evaluation indexes. The mean absolute errors (MAE) with one standard deviation (1SD) between the clinical and CNN-predicted doses were 1.10% ± 0.64%, 2.50% ± 1.17%, 2.04% ± 1.40%, and 2.08% ± 1.99% for D2, D98 in PTV-1 and V65 in rectum and V65 in bladder, respectively, whereas the MAEs with 1SD between the clinical and the RapidPlan™-generated doses were 1.01% ± 0.66%, 2.15% ± 1.25%, 5.34% ± 2.13% and 3.04% ± 1.79%, respectively. Our CNN model could predict dose distributions that were superior or comparable with that generated by RapidPlan™, suggesting the potential of CNN in dose distribution prediction.


Author(s):  
Jonathan Readshaw ◽  
Stefano Giani

AbstractThis work presents a convolutional neural network for the prediction of next-day stock fluctuations using company-specific news headlines. Experiments to evaluate model performance using various configurations of word embeddings and convolutional filter widths are reported. The total number of convolutional filters used is far fewer than is common, reducing the dimensionality of the task without loss of accuracy. Furthermore, multiple hidden layers with decreasing dimensionality are employed. A classification accuracy of 61.7% is achieved using pre-learned embeddings, that are fine-tuned during training to represent the specific context of this task. Multiple filter widths are also implemented to detect different length phrases that are key for classification. Trading simulations are conducted using the presented classification results. Initial investments are more than tripled over an 838-day testing period using the optimal classification configuration and a simple trading strategy. Two novel methods are presented to reduce the risk of the trading simulations. Adjustment of the sigmoid class threshold and re-labelling headlines using multiple classes form the basis of these methods. A combination of these approaches is found to be more than double the Average Trade Profit achieved during baseline simulations.


Informatics ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 36-43
Author(s):  
R. S. Vashkevich ◽  
E. S. Azarov

The paper investigates the problem of voice activity detection from a noisy sound signal. An extremely compact convolutional neural network is proposed. The model has only 385 trainable parameters. Proposed model doesn’t require a lot of computational resources that allows to use it as part of the “internet of things” concept for compact low power devices. At the same time the model provides state of the art results in voice activity detection in terms of detection accuracy. The properties of the model are achieved by using a special convolutional layer that considers the harmonic structure of vocal speech. This layer also eliminates redundancy of the model because it has invariance to changes of fundamental frequency. The model performance is evaluated in various noise conditions with different signal-to-noise ratios. The results show that the proposed model provides higher accuracy compared to voice activity detection model from the WebRTC framework by Google.


Sign in / Sign up

Export Citation Format

Share Document