scholarly journals Natural State Modeling of Singapore Geothermal Reservoir

2012 ◽  
Vol 3 ◽  
pp. 34-40
Author(s):  
Hendrik Tjiawi ◽  
Andrew C. Palmer ◽  
Grahame J. H. Oliver

 The existence of hot springs coupled with the apparent anomalous high heat flow has sparked interest in the potential for geothermal development in Singapore. This geothermal resource may be potentially significant and could be exploited through Engineered Geothermal System (EGS) technology, i.e. a method to create artificial permeability at depth in granitic or sandstone formations as found under Singapore. The apparently ever-increasing fossil fuel price has made the cost of using the EGS technology more viable than it was in the past. Thus, to assess the resource, a numerical model for the geothermal reservoir has been constructed. Mass and heat flows in the system are simulated in 2D with AUTOUGH2.2, and the graphical interface processed through MULGRAPH2.2. Natural state calibration was performed to match both the observed and the expected groundwater profile, and also to match the hot water upflow at the Sembawang hot spring, with simulated flowrate matching the hot spring natural flowrate. The simulation gives an encouraging result of 125 - 150 °C hot water at depth 1.25 – 2.75 km.

2019 ◽  
Vol 125 ◽  
pp. 14002
Author(s):  
Rakhmadi Sulistyanto ◽  
Udi Harmoko ◽  
Gatot Yuliyanto

Research conducted at Pesanggrahan area, Sangubanyu Village, Bawang District, Batang Regency with geographical coordinates at 7°5'00 "00 S - 7°7'30" 00 S, and 109 ° 56'00 "E-109°58'30"E, with an area of around 25 Km². Research methods used quantitative and qualitative methods with descriptive analysis, geological and geochemical analysis. Geochemical fluid samples were taken in manifestations hot springs Pesanggrahan and hot water samples in Sibanteng and Sileri Crater to determine the relationship with geothermal systems in this area. Geomorphology divided into two geomorphology units, they are steep slope and sloping hill. Stratigraphy can be divided into three lithologies, which are andesite breccia, tuff breccia, and tuff sandstone. Based on fluid geochemical characteristics of manifestations, it can be interpreted that hot spring of Pesanggrahan area is outflow zone with bicarbonate-chloride water type, Sibanteng Crater and Sileri Crater, include upflow zone with water type sulfate for Sibanteng Crater, bicarbonate-sulfide water type for Sileri Crater. Environmental source geothermal fluid Pesanggrahan from the magmatic volcanic process. Sources geothermal fluid in Pesanggrahan, Sibanteng and Sileri Crater from meteoric water. Estimated temperature Pesanggrahan in the interval 50-100°C, Sileri Craters 160-180°C, and Sibanteng Craters 140-150°C. The Conceptual model of Pesanggrahan includes a geothermal system that associated with volcanic system and high relief liquid dominated system.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Sukir Maryanto ◽  
Ika Karlina Laila Nur Suciningtyas ◽  
Cinantya Nirmala Dewi ◽  
Arief Rachmansyah

Geothermal resource investigation was accomplished for Blawan-Ijen geothermal system. Blawan geothermal field which located in the northern part of Ijen caldera presents hydrothermal activity related with Pedati fault and local graben. There were about 21 hot springs manifestations in Blawan-Ijen area with calculated temperature about 50°C. We have performed several geophysical studies of underground seepage of hot water characterization. The geoelectric resistivity and GPR methods are used in this research because both of them are very sensitive to detect the presence of hot water. These preliminary studies have established reliable methods for hydrothermal survey that can accurately investigate the underground seepage of hot water with shallow depth resolution. We have successfully identified that the underground seepage of hot water in Blawan geothermal field is following the fault direction and river flow which is evidenced by some hot spring along the Banyu Pahit river with resistivity value less than 40 Ωm and medium conductivity.


2021 ◽  
Vol 13 (1) ◽  
pp. 820-834
Author(s):  
Jun Ma ◽  
Zhifang Zhou

Abstract The exploration of the origin of hot spring is the basis of its development and utilization. There are many low-medium temperature hot springs in Nanjing and its surrounding karst landform areas, such as the Tangshan, Tangquan, Lunshan, and Xiangquan hot springs. This article discusses the origin characters of the Lunshan hot spring with geological condition analysis, hydrogeochemical data, and isotope data. The results show that the hot water is SO4–Ca type in Lunshan area, and the cation content of SO4 is high, which are related to the deep hydrogeological conditions of the circulation in the limestone. Carbonate and anhydrite dissolutions occur in the groundwater circulation process, and they also dominate the water–rock interaction processes in the geothermal reservoir of Lunshan. The hot water rising channels are deeply affected by the NW and SN faults. Schematic diagrams of the conceptual model of the geothermal water circulation in Lunshan are plotted. The origin of Tangshan, Tangquan, and Xiangquan hot springs are similar to the Lunshan hot spring. In general, the geothermal water in karst landforms around Nanjing mainly runs through the carbonate rock area and is exposed near the core of the anticlinal structure of karst strata, forming SO4–Ca/SO4–Ca–Mg type hot spring with the water temperature less than 60°C. The characters of the hot springs around Nanjing are similar, which are helpful for the further research, development, and management of the geothermal water resources in this region.


2021 ◽  
Author(s):  
Andreas Grafe ◽  
Thomas Kempka ◽  
Michael Schneider ◽  
Michael Kühn

<p>The geothermal hot water reservoir underlying the coastal township of Waiwera, northern Auckland Region, New Zealand, has been commercially utilized since 1863. The reservoir is complex in nature, as it is controlled by several coupled processes, namely flow, heat transfer and species transport. At the base of the aquifer, geothermal water of around 50°C enters. Meanwhile, freshwater percolates from the west and saltwater penetrates from the sea in the east. Understanding of the system’s dynamics is vital, as decades of unregulated, excessive abstraction resulted in the loss of previously artesian conditions. To protect the reservoir and secure the livelihoods of businesses, a Water Management Plan by The Auckland Regional Council was declared in the 1980s [1]. In attempts to describe the complex dynamics of the reservoir system with the goal of supplementing sustainable decision-making, studies in the past decades have brought forth several predictive models [2]. These models ranged from being purely data driven statistical [3] to fully coupled process simulations [1].<br><br>Our objective was to improve upon previous numerical models by introducing an updated geological model, in which the findings of a recently undertaken field campaign were integrated [4]. A static 2D Model was firstly reconstructed and verified to earlier multivariate regression model results. Furthermore, the model was expanded spatially into the third dimension. In difference to previous models, the influence of basic geologic structures and the sea water level onto the geothermal system are accounted for. Notably, the orientation of dipped horizontal layers as well as major regional faults are implemented from updated field data [4]. Additionally, the model now includes the regional topography extracted from a digital elevation model and further combined with the coastal bathymetry. Parameters relating to the hydrogeological properties of the strata along with the thermophysical properties of water with respect to depth were applied. Lastly, the catchment area and water balance of the study region are considered.<br><br>The simulation results provide new insights on the geothermal reservoir’s natural state. Numerical simulations considering coupled fluid flow as well as heat and species transport have been carried out using the in-house TRANSport Simulation Environment [5], which has been previously verified against different density-driven flow benchmarks [1]. The revised geological model improves the agreement between observations and simulations in view of the timely and spatial development of water level, temperature and species concentrations, and thus enables more reliable predictions required for water management planning.<br><br>[1] Kühn M., Stöfen H. (2005):<br>      Hydrogeology Journal, 13, 606–626,<br>      https://doi.org/10.1007/s10040-004-0377-6<br><br>[2] Kühn M., Altmannsberger C. (2016):<br>      Energy Procedia, 97, 403-410,<br>      https://doi.org/10.1016/j.egypro.2016.10.034<br><br>[3] Kühn M., Schöne T. (2017):<br>      Energy Procedia, 125, 571-579,<br>      https://doi.org/10.1016/j.egypro.2017.08.196<br><br>[4] Präg M., Becker I., Hilgers C., Walter T.R., Kühn M. (2020):<br>      Advances in Geosciences, 54, 165-171,<br>      https://doi.org/10.5194/adgeo-54-165-2020<br><br>[5] Kempka T. (2020):<br>      Adv. Geosci., 54, 67–77,<br>      https://doi.org/10.5194/adgeo-54-67-2020</p>


2021 ◽  
Author(s):  
Francois Hategekimana ◽  
Theophile Mugerwa ◽  
Cedrick Nsengiyumva ◽  
Digne Rwabuhungu ◽  
Juliet Confiance Kabatesi

Abstract Hot spring is a hot water that is naturally occurring on the surface from the underground and typically heated by subterranean volcanic activity and local underground geothermal gradient. There are four main hot springs in Rwanda such as: Kalisimbi, Bugarama, Kinigi and Nyamyumba former name Gisenyi hot springs. This research focused on the geochemical analysis of Nyamyumba hot springs located near the fresh water of Lake Kivu. Nyamyumba hot springs are located in the western branch of the East African Rift System and they are located near Virunga volcanic complex, explaining the rising and heating of water. The concentrations of Sulfate, Iron, Ammonia, Alkalinity, Silica, Phosphate, Salinity, Alkalinity, and Conductivity using standard procedures were measured. The results showed that hot spring water has higher concentrations of chemicals compared to Lake Kivu water and the geochemistry of these hot springs maybe associated with rock dissolution by hot water. The measured parameters were compared with World Health Organization (WHO) standards for recreational waters and it has been identified that Nyamyumba hot spring are safe to use in therapeutic activities (Swimming).


2018 ◽  
Vol 35 (2) ◽  
pp. 116-141 ◽  
Author(s):  
Erika Almirudis ◽  
Edgar R. Santoyo-Gutiérrez ◽  
Mirna Guevara ◽  
Francisco Paz-Moreno ◽  
Enrique Portugal

A promissory low-to-medium temperature geothermal system located in Sonora (Mexico) has been studied. In the present work, a detailed geochemical survey was carried out to understand the hydrogeochemical signatures of hot spring waters. A field work campaign was conducted for collecting water samples from twelve hot springs placed in four major zones (NW, NE, C, and S). The collected samples were analysed by chemical and isotopic methods for determining their chemical (major and trace elements) and isotopic (18O/16O and D/H) compositions. Using geochemometric analyses of the fluid composition and fractionation, depletion and enrichment processes exhibited by major and trace elements were analysed. Hydrogeochemical classification was used to indicate the presence of sodium-sulphate (Na-SO4) waters in the North (NW and NE) and South hydrothermal zones; whereas calcium-magnesium-bicarbonate (Ca-Mg-HCO3) waters were identified for the Central zone. Some hot spring waters located in the NE zone were also typified as sodium-bicarbonate (Na-HCO3). In relation to the isotopic signatures of 18O/16O and D/H, four water samples from NE and C zones lie near to the global meteoric water line; whereas the remaining eight samples showed a shift for both oxygen and deuterium isotopes. A mixing line with a small shift of δ18O was identified and used as a proxy to discriminate waters with different isotopic signatures. After applying a geochemometric outliers detection/rejection and an iterative ANOVA statistical test, the mean temperature inferred from the most reliable solute geothermometers was 149±40 °C, which suggests to be considered as the minimum value of the reservoir temperature. As most of the hot spring waters fall outside of the full equilibrium curve, the original reservoir conditions were corrected by using a mixing conductive model, which predicted a deep equilibrium temperature of 210±11 °C. As this temperature is considerably higher than the mean temperature inferred from the geothermometers, it was suggested as an optimistic maximum reservoir temperature of the Sonora geothermal system. Using 150 °C and 200 °C as rounded-off reservoir temperatures (or min-max estimates), geochemical equilibria modelling based on fluid-mineral stability diagrams was carried out. An equilibrium process among local hydrothermal waters and albite-potassium feldespar and muscovite-prehnite-laumontite mineral assemblages was found. These minerals were proposed as representative mineral assemblages of low-grade metamorphism, which seems to indicate that the geothermal fluid equilibria were probably reached within the intermediate to acidic volcanic rocks from the Tarahumara Formation.


2019 ◽  
Vol 23 (5 Part A) ◽  
pp. 2613-2622
Author(s):  
Bi Li ◽  
Shi Zheng

Guangxi Guilin area, China, is rich in hot spring resources. In this paper, a hot spring water temperature monitoring system is developed for longsheng hot springs. Mainly using the hot water of eye of hot springs as the heat source, designing a set of multi-point temperature monitoring system with single-chip and multi-slave as the core of the single-chip microcomputer and wireless and bi-directional transmission for the main station and multiple slave stations to realize automatic temperature monitoring. The system slave station can exchange geothermal water with high temperature extracted from the eye of hot springs and cold water, and automatically control the temperature of the hot spring pool to reach a set value range by controlling the flow rate of the cold water. At the same time, the main station can complete the tasks of monitoring system by setting control commands such as temperature.


Author(s):  
Kazuaki Yazawa ◽  
Ali Shakouri

We conducted an analytic study of concentrated solar photovoltaic and hot water co-generation based on various solar cell technologies and micro channel heat sinks. By co-optimizing the electricity generation and heat transport in the system, one can minimize the cost of the key materials and compare different tradeoffs as a function of concentration ratio or other parameters. Concentrated solar Photovoltaic (PV) based on multi junction cells can yield around 35–40% efficiency. They are suitable for high photon energy flux and they are already available in the market. However, due to high heat fluxes at large concentrations, such as 100–1000 Suns, heat sinks could be costly in terms of material mass, space, energy for pumping fluid, and system complexity. In addition, since the efficiency of solar cells decreases as the ambient temperature increases, there is a tradeoff between electricity and hot water cogeneration. Similar to our previous analysis of thermoelectric (TE) and hot water co-generation, PV/solar thermal system is also optimized. The results are compared with thermoelectric systems as a function of the concentration ratio. The solar concentrated co-generation system using either PV or TE for direct electricity generation collects more than 80% of solar energy when it is optimized. We calculate the overall cost minima as a function of concentration ratio. Although there are some differences between PV and TE, the optimum concentration ratio for the system is in the range of 100–300 Suns for both.


1977 ◽  
Vol 17 (03) ◽  
pp. 171-183 ◽  
Author(s):  
R.M. Toronyi ◽  
S.M. Farouq Ali

Abstract A numerical mathematical model for simulating production from a two-phase geothermal reservoir production from a two-phase geothermal reservoir was developed and tested. The model was a two-dimensional areal or cross-sectional unsteadystate description of the flow of mass and heat within an anisotropic, heterogeneous, porous medium containing a single-component, two-phase fluid. Flow in the production well was. taken to be one dimensional and steady state, using an approximate representation of a two-phase mixture. A totally implicit solution scheme was used. The simulator was used to investigate the effects of various levels of porosity, permeability, and initial pressure and liquid-phase saturation distributions on production. The numerical simulator was tested for a wide variety of conditions and was found to be stable for large time steps. Based on the numerical results, the behavior of a two-phase geothermal reservoir was classified into three types, depending on the initial liquid saturation. It was found that superheated regions formed more readily in reservoirs of low porosity and permeability. Introduction A geothermal system occurs as a heat anomaly that can be explained as follows. The earth's interior is hotter than its surface. This difference produces a temperature gradient that, in turn, produces a temperature gradient that, in turn, provides a measure of the heat flow rate. The provides a measure of the heat flow rate. The average heat flux for the earth is 1.5 mu cal/sq cm-sec. A geothermal system involves a flux that is 1 1/2 to 5 times higher than the average. Consequently, a geothermal system occurs as an anomaly in terms of heat flow. A high heat flux, along with surface seeps, is indicative of a geothermal system. Since the main mode of heat transfer within a geothermal fluid reservoir is convection, the reservoir itself is called a hydrothermal convention system. Hydrothermal convection systems have been classified into two types based on the physical state of the dominant pressure-controlling physical state of the dominant pressure-controlling phase: hot-water systems and vapor-dominated phase: hot-water systems and vapor-dominated system. In hot-water systems, fluids exist within the reservoir mostly in the liquid state and generally produce from 70 to 90 percent of their total mass as water at the surface. Vapor-dominated systems generally produce dry to superheated steam, and fluids exist within the reservoir mostly in the vapor state, Surface manifestations will usually take the form of fumaroles, mud pots, mud volcanoes, turbid pools, and acid-leached ground. Only three known areas exist as this type of system. These are the Geysers field in California, the Larderello field in Italy, and the Matsukawa field in Japan. The pressures of vapor-dominated systems are below hydrostatic. Also, the initial pressures and temperatures in vapor-dominated systems are very close to the temperature and pressure relating to the maximum enthalpy of saturated steam - 236 degrees C and 31.8 kg/sq cm. An explanation for this behavior has been given by James and by White et al. Reservoir engineering principles have been used to study production aspects of geothermal systems only during the last decade. In that time, relatively few models have been developed that simulate the production from a geothermal reservoir containing production from a geothermal reservoir containing both a liquid and a vapor phase. In fact, only three models have assumed the presence of a two-phase Hudd within a geothermal presence of a two-phase Hudd within a geothermal reservoir. One of these models, developed by Donaldson, was a steady-state, one-dimensional description of two-phase flow within porous media, but did not simulate production. The other two models, those of Whiting and Ramey and of Brigham and Morrow, were lumped-parameter formulations. Thus, objective of this paper is to develop a model that simulates production from a two-phase geothermal reservoir in greater detail than has been done previously. SPEJ P. 171


Author(s):  
Muhammad Afzal Jamali ◽  
Muhammad Hassan Agheem ◽  
Akhtar Hussain Markhand ◽  
Shahid Ali Shaikh ◽  
Asfand Yar Wali Arain ◽  
...  

Geothermal water is increasingly used around the world for its exploitation. Bulk electrical resistivity differences can bring significant information on variation of subsurface geothermal aquifer characteristics. The electrical resistivity survey was carried out in Laki range in lower Indus basin in the study area to explore the subsurface geothermal aquifers. The Schlumberger electrode configuration with range from 2 m to 220 m depth was applied. Three prominent locations of hot springs were selected including Laki Shah Saddar, Lalbagh and Kai hot spring near Sehwan city. After processing resistivity image data, two hot water geothermal aquifers were delineated at Laki Shah Sadder hot springs. The depth of first aquifer was 56 m and its thickness 38 m in the limestones. The depth of second aquifer of 190 m and with thickness of 96 m hosted in limestone. In Lalbagh hot springs two geothermal aquifers were delineated on the basis of apparent resistivity contrast, the depth of first aquifer zone in sandstone was in sandstone 15 m and thickness 12 m, while the depth of second aquifer was 61m and thickness was 35m. In Kai hot springs two hot water geothermal aquifers were delineated. The depth of first geothermal aquifer was 21m and thickness was 18 m and the depth of second aquifer was 105 m and thickness was 61m present in sandstone lithology. Present work demonstrates the capability of electrical resistivity images to study the potential of geothermal energy in shallow aquifers. These outcomes could potentially lead to a number of practical applications, such as the monitoring or the design of shallow geothermal systems.


Sign in / Sign up

Export Citation Format

Share Document