scholarly journals Genome Variation in Tick Infestation and Cryptic Divergence in Tunisian Indigenous Sheep

Author(s):  
Abulgasim M. Ahbara ◽  
Médiha Khamassi Khbou ◽  
Rihab Rhomdhane ◽  
Limam Sassi ◽  
Mohamed Gharbi ◽  
...  

Abstract Background: Ticks are obligate haematophagous ectoparasites considered second to mosquitos as vectors and reservoirs of multiple pathogens of global concern. Individual variation in tick infestation has been reported in indigenous sheep, but the genes regulating the trait are poorly understood.Results: Here, we report 397 genome-wide signatures of selection overlapping 991 genes from the analysis, using four methods (ROH, LR-GWAS, XP-EHH, FST), of 600K SNP genotype data from 170 Tunisian sheep exhibiting high and low resistance to ticks. We considered 45 signatures detected by consensus results of at least two methods as high-confidence selection sweep regions. These spanned 104 genes which included immune system function genes, solute carriers and chemokine receptor. One region spanned STX5, that has been associated with tick resistance in cattle, implicating it as a prime candidate in sheep. We also observed RAB6B and TF in a high confidence candidate region that has been associated with growth traits suggesting natural selection is enhancing growth and developmental stability under tick challenge. The analysis also reveals fine-scale genome structure suggesting the existence of cryptic divergence in the Tunisian sheep.Conclusion: Our findings provide genomic reference that could enhance our understanding of the genetic architecture of tick resistance and cryptic divergence in indigenous sheep.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morteza Bitaraf Sani ◽  
Javad Zare Harofte ◽  
Mohammad Hossein Banabazi ◽  
Saeid Esmaeilkhanian ◽  
Ali Shafei Naderi ◽  
...  

AbstractFor thousands of years, camels have produced meat, milk, and fiber in harsh desert conditions. For a sustainable development to provide protein resources from desert areas, it is necessary to pay attention to genetic improvement in camel breeding. By using genotyping-by-sequencing (GBS) method we produced over 14,500 genome wide markers to conduct a genome- wide association study (GWAS) for investigating the birth weight, daily gain, and body weight of 96 dromedaries in the Iranian central desert. A total of 99 SNPs were associated with birth weight, daily gain, and body weight (p-value < 0.002). Genomic breeding values (GEBVs) were estimated with the BGLR package using (i) all 14,522 SNPs and (ii) the 99 SNPs by GWAS. Twenty-eight SNPs were associated with birth weight, daily gain, and body weight (p-value < 0.001). Annotation of the genomic region (s) within ± 100 kb of the associated SNPs facilitated prediction of 36 candidate genes. The accuracy of GEBVs was more than 0.65 based on all 14,522 SNPs, but the regression coefficients for birth weight, daily gain, and body weight were 0.39, 0.20, and 0.23, respectively. Because of low sample size, the GEBVs were predicted using the associated SNPs from GWAS. The accuracy of GEBVs based on the 99 associated SNPs was 0.62, 0.82, and 0.57 for birth weight, daily gain, and body weight. This report is the first GWAS using GBS on dromedary camels and identifies markers associated with growth traits that could help to plan breeding program to genetic improvement. Further researches using larger sample size and collaboration of the camel farmers and more profound understanding will permit verification of the associated SNPs identified in this project. The preliminary results of study show that genomic selection could be the appropriate way to genetic improvement of body weight in dromedary camels, which is challenging due to a long generation interval, seasonal reproduction, and lack of records and pedigrees.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tejaswi Iyyanki ◽  
Baozhen Zhang ◽  
Qixuan Wang ◽  
Ye Hou ◽  
Qiushi Jin ◽  
...  

Abstract Muscle-invasive bladder cancers are characterized by their distinct expression of luminal and basal genes, which could be used to predict key clinical features such as disease progression and overall survival. Transcriptionally, FOXA1, GATA3, and PPARG are shown to be essential for luminal subtype-specific gene regulation and subtype switching, while TP63, STAT3, and TFAP2 family members are critical for regulation of basal subtype-specific genes. Despite these advances, the underlying epigenetic mechanisms and 3D chromatin architecture responsible for subtype-specific regulation in bladder cancer remain unknown. Result We determine the genome-wide transcriptome, enhancer landscape, and transcription factor binding profiles of FOXA1 and GATA3 in luminal and basal subtypes of bladder cancer. Furthermore, we report the first-ever mapping of genome-wide chromatin interactions by Hi-C in both bladder cancer cell lines and primary patient tumors. We show that subtype-specific transcription is accompanied by specific open chromatin and epigenomic marks, at least partially driven by distinct transcription factor binding at distal enhancers of luminal and basal bladder cancers. Finally, we identify a novel clinically relevant transcription factor, Neuronal PAS Domain Protein 2 (NPAS2), in luminal bladder cancers that regulates other subtype-specific genes and influences cancer cell proliferation and migration. Conclusion In summary, our work identifies unique epigenomic signatures and 3D genome structures in luminal and basal urinary bladder cancers and suggests a novel link between the circadian transcription factor NPAS2 and a clinical bladder cancer subtype.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Bingru Zhao ◽  
Hanpeng Luo ◽  
Xixia Huang ◽  
Chen Wei ◽  
Jiang Di ◽  
...  

Abstract Background Genetic improvement of wool and growth traits is a major goal in the sheep industry, but their underlying genetic architecture remains elusive. To improve our understanding of these mechanisms, we conducted a weighted single-step genome-wide association study (WssGWAS) and then integrated the results with large-scale transcriptome data for five wool traits and one growth trait in Merino sheep: mean fibre diameter (MFD), coefficient of variation of the fibre diameter (CVFD), crimp number (CN), mean staple length (MSL), greasy fleece weight (GFW), and live weight (LW). Results Our dataset comprised 7135 individuals with phenotype data, among which 1217 had high-density (HD) genotype data (n = 372,534). The genotypes of 707 of these animals were imputed from the Illumina Ovine single nucleotide polymorphism (SNP) 54 BeadChip to the HD Array. The heritability of these traits ranged from 0.05 (CVFD) to 0.36 (MFD), and between-trait genetic correlations ranged from − 0.44 (CN vs. LW) to 0.77 (GFW vs. LW). By integrating the GWAS signals with RNA-seq data from 500 samples (representing 87 tissue types from 16 animals), we detected tissues that were relevant to each of the six traits, e.g. liver, muscle and the gastrointestinal (GI) tract were the most relevant tissues for LW, and leukocytes and macrophages were the most relevant cells for CN. For the six traits, 54 quantitative trait loci (QTL) were identified covering 81 candidate genes on 21 ovine autosomes. Multiple candidate genes showed strong tissue-specific expression, e.g. BNC1 (associated with MFD) and CHRNB1 (LW) were specifically expressed in skin and muscle, respectively. By conducting phenome-wide association studies (PheWAS) in humans, we found that orthologues of several of these candidate genes were significantly (FDR < 0.05) associated with similar traits in humans, e.g. BNC1 was significantly associated with MFD in sheep and with hair colour in humans, and CHRNB1 was significantly associated with LW in sheep and with body mass index in humans. Conclusions Our findings provide novel insights into the biological and genetic mechanisms underlying wool and growth traits, and thus will contribute to the genetic improvement and gene mapping of complex traits in sheep.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 832
Author(s):  
Nina Moravčíková ◽  
Radovan Kasarda ◽  
Radoslav Židek ◽  
Luboš Vostrý ◽  
Hana Vostrá-Vydrová ◽  
...  

This study focused on the genomic differences between the Czechoslovakian wolfdog (CWD) and its ancestors, the Grey wolf (GW) and German Shepherd dog. The Saarloos wolfdog and Belgian Shepherd dog were also included to study the level of GW genetics retained in the genome of domesticated breeds. The dataset consisted of 131 animals and 143,593 single nucleotide polymorphisms (SNPs). The effects of demographic history on the overall genome structure were determined by screening the distribution of the homozygous segments. The genetic variance distributed within and between groups was quantified by genetic distances, the FST index, and discriminant analysis of principal components. Fine-scale population stratification due to specific morphological and behavioural traits was assessed by principal component and factorial analyses. In the CWD, a demographic history effect was manifested mainly in a high genome-wide proportion of short homozygous segments corresponding to a historical load of inbreeding derived from founders. The observed proportion of long homozygous segments indicated that the inbreeding events shaped the CWD genome relatively recently compared to other groups. Even if there was a significant increase in genetic similarity among wolf-like breeds, they were genetically separated from each other. Moreover, this study showed that the CWD genome carries private alleles that are not found in either wolves or other dog breeds analysed in this study.


2021 ◽  
Author(s):  
◽  
Noémie Valenza-Troubat

<p><b>Understanding the relationship between DNA sequence variation and the diversity of observable traits across the tree of life is a central research theme in biology. In all organisms, most traits vary continuously between individuals. Explaining the genetic basis of this quantitative variation requires disentangling genetic from non-genetic factors, as well as their interactions. The identification of causal genetic variants yields fundamental insights into how evolution creates diversity across the tree of life. Ultimately, this information can be used for medical, environmental and agricultural applications. Aquaculture is an industry that is experiencing significant global growth and is benefiting from the advances of genomic research. Genomic information helps to improve complex commercial phenotypes such as growth traits, which are easily quantified visually, but influenced by polygenes and multiple environmental factors, such as temperature. In the context of a global food crisis and environmental change, there is an urgent need not only to understand which genetic variants are potential candidates for selection gains, but also how the architecture of these traits are composed (e.g. monogenes, polygenes) and how they are influenced by and interact with the environment. The overall goal of this thesis research was to generate a genome-wide multi-omics dataset matched with exhaustive phenotypic information derived from a F0-F1 pedigree to investigate the quantitative genetic basis of growth in the New Zealand silver trevally (Pseudocaranx georgianus). These data were used to identify genomic regions that co-segregate with growth traits, and to describe the regulation of the genes involved in response to temperature fluctuations. The findings of this research helped gain fundamental insights into the genotype–phenotype map in an important teleost species and understand its ability to dynamically respond to temperature variations. This will ultimately support the establishment of a genomics-informed New Zealand aquaculture breeding programme. </b></p> <p>Chapter 1 of this thesis provides an overview of how genes interact with the environment to produce various growth phenotypes and how an understanding of this is important in aquaculture. This first chapter provides the deeper context for the research in subsequent data chapters. </p> <p>Chapter 2 describes the study population, the collection of phenotypic and genotypic data, and a first description of the genetic parameters of growth traits in trevally. A combination of Whole Genome Sequencing (WGS) and Genotyping-By-Sequencing (GBS) techniques were used to generate 60 thousand Single Nucleotide Polymorphism (SNP) markers for individuals in a two-generation pedigree. Together with phenotypic data, the genotyping data were used to reconstruct the pedigree, measure inbreeding levels, and estimate heritability for 10 growth traits. Parents were identified for 63% of the offspring and successful pedigree reconstruction indicated highly uneven contributions of each parent, and between the sexes, to the subsequent generation. The average inbreeding levels did not change between generations, but were significantly different between families. Growth patterns were found to be similar to that of other carangids and subject to seasonal variations. Heritability as well as genetic and phenotypic correlations were estimated using both a pedigree and a genomic relatedness matrix. All growth trait heritability estimates and correlations were found to be consistently high and positively correlated to each other. </p> <p>In Chapter 3, genotypic and phenotypic data were used to carry out linkage mapping and a genome-wide association study (GWAS) to map quantitative trait loci (QTLs) associated with growth differences in the F1 population. A linkage map was generated using the largest family, which allowed to scan for rare variants associated with the traits. The linkage map reported in this thesis is the first one for the Pseudocaranx genus and one of the densest for the carangid family. It included 19,861 SNPs contained in 24 linkage groups, which correspond to the 24 trevally chromosomes. Eight significant QTLs associated with height, length and weight were discovered on three linkage groups. Using GWAS, 113 SNPs associated with nine traits were identified and 29 genetic growth hot spots were uncovered. Two of the GWAS markers co-located with the QTLs discovered with the linkage mapping analysis. This demonstrates that combining QTL mapping and GWAS represents a powerful approach for the identification and validation of loci controlling complex phenotypes, such as growth, and provides important insights into the genetic architecture of these traits. </p> <p>Chapter 4, the last data chapter, investigates plasticity in gene expression patterns and growth of juvenile trevally, in response to different temperatures. Temperature conditions were experimentally manipulated for 1 month to mimic seasonal extremes. Phenotypic differences in growth were measured in 400 individuals, and the gene expression patterns of the pituitary gland and the liver were compared across treatments in a subset of 100 individuals, using RNA sequencing. Results showed that growth increased 50% more in the warmer compared with the colder condition, suggesting that temperature has a large impact on the metabolic activity associated with growth. We were able to annotate 27,887 gene models and found 39 differentially expressed genes (DEGs) in the pituitary, and 238 in the liver. Of these, 6 DEGs showed a common expression pattern between the tissues. Annotated blast matches of all DEGs revealed genes linked to major pathways affecting metabolism and reproduction. Our results indicate that native New Zealand trevally exhibit predictable plastic regulatory responses to temperature stress and the genes identified provide excellent for selective breeding objectives and studied how populations may adapt to increasing temperatures.</p> <p>Finally, Chapter 5 discusses the implications, future directions, and application of this research for trevally and other breeding programmes. It more broadly highlights the insights that were gained on the genetic architecture of growth, and the role of temperature in interacting and modulating genes involved in plastic growth responses.</p>


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94802 ◽  
Author(s):  
Marcos E. Buzanskas ◽  
Daniela A. Grossi ◽  
Ricardo V. Ventura ◽  
Flávio S. Schenkel ◽  
Mehdi Sargolzaei ◽  
...  

2018 ◽  
Vol 50 (12) ◽  
pp. 1051-1058 ◽  
Author(s):  
Samantha A. Brooks ◽  
John Stick ◽  
Ashley Braman ◽  
Katelyn Palermo ◽  
N. Edward Robinson ◽  
...  

Equine recurrent laryngeal neuropathy (RLN) is a bilateral mononeuropathy with an unknown etiology. In Thoroughbreds (TB), we previously demonstrated that the haplotype association for height (LCORL/NCAPG locus on ECA3, which affects body size) and RLN was coincident. In the present study, we performed a genome-wide association scan (GWAS) for RLN in 458 American Belgian Draft Horses, a breed fixed for the LCORL/NCAPG risk alelle. In this breed, RLN risk is associated with sexually dimorphic differences in height, and we identified a novel locus contributing to height in a sex-specific manner: MYPN (ECA1). Yet this specific locus contributes little to RLN risk, suggesting that other growth traits correlated to height may underlie the correlation to this disease. Controlling for height, we identified a locus on ECA15 contributing to RLN risk specifically in males. These results suggest that loci with sex-specific gene expression play an important role in altering growth traits impacting RLN etiology, but not necessarily adult height. These newly identified genes are promising targets for novel preventative and treatment strategies.


2018 ◽  
Vol 16 (12) ◽  
pp. 2042-2052 ◽  
Author(s):  
Zifeng Guo ◽  
Guozheng Liu ◽  
Marion S. Röder ◽  
Jochen C. Reif ◽  
Martin W. Ganal ◽  
...  

2019 ◽  
Vol 9 ◽  
Author(s):  
Abulgasim Ahbara ◽  
Hussain Bahbahani ◽  
Faisal Almathen ◽  
Mohammed Al Abri ◽  
Mukhtar Omar Agoub ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document