scholarly journals Motor Variances in Arm Cranking as a Function of the Resistance

2020 ◽  
Author(s):  
Mariann Mravcsik ◽  
Lilla Botzheim ◽  
Norbert Zentai ◽  
Davide Piovesan ◽  
Jozsef Laczko

Abstract Background: Arm cycling on an ergometer is common in sports training and rehabilitation protocols, but has not been widely studied from an aspect of neural control. The hand movement is constrained along a circular path, and the user is working against a resistance, maintaining a cadence. Even if the desired hand trajectory is given, there is the flexibility to choose patterns of joint coordination and muscle activation, given the kinematic redundancy of the upper limb. With changing external load, motor noise and changing joint stiffness may affect the pose of the arm even though the endpoint trajectory is unchanged, unless a control mechanism maintains the same arm configuration in corresponding time points of the cycles. However, the effect of crank resistance on the variances of arm configuration and muscle activation has not been investigated, yet. Methods: Fifteen healthy participants performed arm cranking on an arm-cycle ergometer both unimanually and bimanually with a cadence of 60 rpm against three crank resistances. We investigated arm configuration variances and muscle activation variances. Arm configuration was given by inter-segmental joint angles, while muscle activation by surface EMGs of arm muscles. Applying multifactorial ANOVA we evaluated the effects of resistance conditions. Results: Arm configuration variance in the course of arm cranking was not affected by crank resistance, while muscle activation variance was proportional to the square of electromyographic muscle activity. Furthermore, the shape of the variance time profiles for both arm configuration and muscle activation was not affected by crank resistance independently on cranking being performed unimanually or bimanually. Conclusions: Contrary to the prevailing assumption that an increased motor noise would affect the variance of auxiliary movements, the influence of noise doesn’t appear at the arm configuration level even when the system is redundant. Our results suggest that neural control stabilizes arm configurations against altered external force in arm cranking. This may reflect the separation of kinematic- and force-control, via mechanisms that are compensating for dynamic non-linearities. Arm cranking may be suitable when the aim is to perform training under different load conditions, preserving stable and secure control of joint movements and muscle activations.

2021 ◽  
Vol 76 (1) ◽  
pp. 175-189
Author(s):  
Mariann Mravcsik ◽  
Lilla Botzheim ◽  
Norbert Zentai ◽  
Davide Piovesan ◽  
Jozsef Laczko

Abstract Arm cycling on an ergometer is common in sports training and rehabilitation protocols. The hand movement is constrained along a circular path, and the user is working against a resistance, maintaining a cadence. Even if the desired hand trajectory is given, there is the flexibility to choose patterns of joint coordination and muscle activation, given the kinematic redundancy of the upper limb. With changing external load, motor noise and changing joint stiffness may affect the pose of the arm even though the endpoint trajectory is unchanged. The objective of this study was to examine how the crank resistance influences the variances of joint configuration and muscle activation. Fifteen healthy participants performed arm cranking on an arm-cycle ergometer both unimanually and bimanually with a cadence of 60 rpm against three crank resistances. Joint configuration was represented in a 3-dimensional joint space defined by inter-segmental joint angles, while muscle activation in a 4-dimensional "muscle activation space" defined by EMGs of 4 arm muscles. Joint configuration variance in the course of arm cranking was not affected by crank resistance, whereas muscle activation variance was proportional to the square of muscle activation. The shape of the variance time profiles for both joint configuration and muscle activation was not affected by crank resistance. Contrary to the prevailing assumption that an increased motor noise would affect the variance of auxiliary movements, the influence of noise doesn’t appear at the joint configuration level even when the system is redundant. Our results suggest the separation of kinematic- and force-control, via mechanisms that are compensating for dynamic nonlinearities. Arm cranking may be suitable when the aim is to perform training under different load conditions, preserving stable and secure control of joint movements and muscle activations.


2014 ◽  
Vol 8 (3) ◽  
Author(s):  
Zlatko Matjačić ◽  
Matjaž Zadravec ◽  
Jakob Oblak

Clinical rehabilitation of individuals with various neurological disorders requires a significant number of movement repetitions in order to improve coordination and restoration of appropriate muscle activation patterns. Arm reaching movement is frequently practiced via motorized arm cycling ergometers where the trajectory of movement is circular thus providing means for practicing a single and rather nonfunctional set of muscle activation patterns, which is a significant limitation. We have developed a novel mechanism that in the combination with an existing arm ergometer device enables nine different movement modalities/trajectories ranging from purely circular trajectory to four elliptical and four linear trajectories where the direction of movement may be varied. The main objective of this study was to test a hypothesis stating that different movement modalities facilitate differences in muscle activation patterns as a result of varying shape and direction of movement. Muscle activation patterns in all movement modalities were assessed in a group of neurologically intact individuals in the form of recording the electromyographic (EMG) activity of four selected muscle groups of the shoulder and the elbow. Statistical analysis of the root mean square (RMS) values of resulting EMG signals have shown that muscle activation patterns corresponding to each of the nine movement modalities significantly differ in order to accommodate to variation of the trajectories shape and direction. Further, we assessed muscle activation patterns following the same protocol in a selected clinical case of hemiparesis. These results have shown the ability of the selected case subject to produce different muscle activation patterns as a response to different movement modalities which show some resemblance to those assessed in the group of neurologically intact individuals. The results of the study indicate that the developed device may significantly extend the scope of strength and coordination training in stroke rehabilitation which is in current clinical rehabilitation practice done through arm cycling.


Compensatory movement after stroke occurred when inter-joint coordination between arm and forearm for the purpose of arm transport becomes limited due to the weaknesses of the upper limb after stroke. This limitation causes an inefficiency of hand movement to perform the activity of daily living (ADL). Previous work has shown the possibility of using Kinect to assess torso compensation in typical assessment of upper limb movement in a stroke-simulated setting using a Torso Principal Component Analysis (PCA) Model. This research extends the study into evaluating Torso PCA Model in terms of orientation angles of the torso in three dimensional when performing planar activities namely circle tracing and point-topoint tracing. The orientation angles were compared to the outcome of the measurement from a standard motion capture system and Kinect’s intrinsic chest orientation angles. Based on the statistical results, Torso PCA model is concurrently valid with the clinically accepted measures of torso orientation and can be used further to analyze torso compensation in stroke patients.


Author(s):  
Ilaria Mileti ◽  
Aurora Serra ◽  
Nerses Wolf ◽  
Victor Munoz-Martel ◽  
Antonis Ekizos ◽  
...  

AbstractThe use of motorized treadmills as convenient tools for the study of locomotion has been in vogue for many decades. However, despite the widespread presence of these devices in many scientific and clinical environments, a full consensus on their validity to faithfully substitute free overground locomotion is still missing. Specifically, little information is available on whether and how the neural control of movement is affected when humans walk and run on a treadmill as compared to overground. Here, we made use of linear and nonlinear analysis tools to extract information from electromyographic recordings during walking and running overground, and on an instrumented treadmill. We extracted synergistic activation patterns from the muscles of the lower limb via non-negative matrix factorization. We then investigated how the motor modules (or time-invariant muscle weightings) were used in the two locomotion environments. Subsequently, we examined the timing of motor primitives (or time-dependent coefficients of muscle synergies) by calculating their duration, the time of main activation, and their Hurst exponent, a nonlinear metric derived from fractal analysis. We found that motor modules were not influenced by the locomotion environment, while motor primitives resulted overall more regular in treadmill than in overground locomotion, with the main activity of the primitive for propulsion shifted earlier in time. Our results suggest that the spatial and sensory constraints imposed by the treadmill environment forced the central nervous system to adopt a different neural control strategy than that used for free overground locomotion. A data-driven indication that treadmills induce perturbations to the neural control of locomotion.


Author(s):  
Lilla Botzheim ◽  
Jozsef Laczko ◽  
Diego Torricelli ◽  
Mariann Mravcsik ◽  
José L. Pons ◽  
...  

Arm cycling is a bi-manual motor task used in medical rehabilitation and in sports training. Understanding how muscle coordination changes across different biomechanical constraints in arm cycling is a step towards improved rehabilitation approaches. This exploratory study aims to get new insights on motor control during arm cycling. To achieve our main goal, we used the muscle synergies analysis to test three hypotheses: 1) body position with respect to gravity (sitting and supine) has an effect on muscle synergies; 2) the movement size (crank length) has an effect on the synergistic behavior; 3) the bimanual cranking mode (asynchronous and synchronous) requires different synergistic control. Thirteen able-bodied volunteers performed arm cranking on a custom-made device with unconnected cranks, which allowed testing three different conditions: body position (sitting versus supine), crank length (10cm versus 15cm) and cranking mode (synchronous versus asynchronous). For each of the eight possible combinations, subjects cycled for 30 seconds while electromyography of 8 muscles (4 from each arm) were recorded: biceps brachii, triceps brachii, anterior deltoid and posterior deltoid. Muscle synergies in this 8-dimensional muscle space were extracted by non-negative matrix factorization. Four synergies accounted for over 90% of muscle activation variances in all conditions. Results showed that synergies were affected by body position and cranking mode but practically unaffected by movement size. These results suggest that the central nervous system may employ different motor control strategies in response to external constraints such as cranking mode and body position during arm cycling.


2019 ◽  
Vol 44 (4) ◽  
pp. 434-442 ◽  
Author(s):  
Paul T. Morgan ◽  
Anni Vanhatalo ◽  
Joanna L. Bowtell ◽  
Andrew M. Jones ◽  
Stephen J. Bailey

Acute acetaminophen (ACT) ingestion has been shown to enhance cycling time-trial performance. The purpose of this study was to assess whether ACT ingestion enhances muscle activation and critical power (CP) during maximal cycling exercise. Sixteen active male participants completed two 3-min all-out tests against a fixed resistance on an electronically braked cycle ergometer 60 min after ingestion of 1 g of ACT or placebo (maltodextrin, PL). CP was estimated as the mean power output over the final 30 s of the test and W′ (the curvature constant of the power–duration relationship) was estimated as the work done above CP. The femoral nerve was stimulated every 30 s to measure membrane excitability (M-wave) and surface electromyography (EMGRMS) was recorded continuously to infer muscle activation. Compared with PL, ACT ingestion increased CP (ACT: 297 ± 32 W vs. PL: 288 ± 31 W, P < 0.001) and total work done (ACT: 66.4 ± 6.5 kJ vs. PL: 65.4 ± 6.4 kJ, P = 0.03) without impacting W′ (ACT: 13.1 ± 2.9 kJ vs. PL: 13.6 ± 2.4 kJ, P = 0.19) or the M-wave amplitude (P = 0.66) during the 3-min all-out cycling test. Normalised EMGRMS amplitude declined throughout the 3-min protocol in both PL and ACT conditions; however, the decline in EMGRMS amplitude was attenuated in the ACT condition, such that the EMGRMS amplitude was greater in ACT compared with PL over the last 60 s of the test (P = 0.04). These findings indicate that acute ACT ingestion might increase performance and CP during maximal cycling exercise by enhancing muscle activation.


2005 ◽  
Vol 93 (5) ◽  
pp. 2698-2709 ◽  
Author(s):  
Y. Y. Dhaher ◽  
A. D. Tsoumanis ◽  
T. T. Houle ◽  
W. Z. Rymer

We have previously shown that abduction angular perturbations applied to the knee consistently elicit reflex responses in knee joint musculature. Although a stabilizing role for such reflexes is widely proposed, there are as of yet no studies quantifying the contribution of these reflex responses to joint stiffness. In this study, we estimate the mechanical contributions of muscle contractions elicited by mechanical excitation of periarticular tissue receptors to medial-lateral knee joint stiffness. We hypothesize that these reflex muscle contractions will significantly increase knee joint stiffness in the adduction/abduction direction and enhance the overall stability of the knee. To assess medial-lateral joint stiffness, we applied an abducting positional deflection to the fully extended knee using a servomotor and recorded the torque response using a six degree-of-freedom load-cell. EMG activity was also recorded in both relaxed and preactivated quadriceps and hamstrings muscles with surface electrodes. A simple, linear, second-order, delayed model was used to describe the knee joint dynamics in the medial/lateral direction. Our data indicate that excitation of reflexes from periarticular tissue afferents results in a significant increase of the joint’s adduction-abduction stiffness. Similar to muscle stretch reflex action, which is modulated with background activation, these reflexes also show dependence on muscle activation. The potential significance of this reflex stiffness during functional tasks was also discussed. We conclude that reflex activation of knee muscles is sufficient to enhance joint stabilization in the adduction/abduction direction, where knee medial-lateral loading arises frequently during many activities.


2017 ◽  
Vol 23 (6) ◽  
pp. 649-663 ◽  
Author(s):  
Karen Minassian ◽  
Ursula S. Hofstoetter ◽  
Florin Dzeladini ◽  
Pierre A. Guertin ◽  
Auke Ijspeert

The ability of dedicated spinal circuits, referred to as central pattern generators (CPGs), to produce the basic rhythm and neural activation patterns underlying locomotion can be demonstrated under specific experimental conditions in reduced animal preparations. The existence of CPGs in humans is a matter of debate. Equally elusive is the contribution of CPGs to normal bipedal locomotion. To address these points, we focus on human studies that utilized spinal cord stimulation or pharmacological neuromodulation to generate rhythmic activity in individuals with spinal cord injury, and on neuromechanical modeling of human locomotion. In the absence of volitional motor control and step-specific sensory feedback, the human lumbar spinal cord can produce rhythmic muscle activation patterns that closely resemble CPG-induced neural activity of the isolated animal spinal cord. In this sense, CPGs in humans can be defined by the activity they produce. During normal locomotion, CPGs could contribute to the activation patterns during specific phases of the step cycle and simplify supraspinal control of step cycle frequency as a feedforward component to achieve a targeted speed. Determining how the human CPGs operate will be essential to advance the theory of neural control of locomotion and develop new locomotor neurorehabilitation paradigms.


2005 ◽  
Vol 94 (5) ◽  
pp. 3046-3057 ◽  
Author(s):  
Jonathan Shemmell ◽  
Matthew Forner ◽  
James R. Tresilian ◽  
Stephan Riek ◽  
Benjamin K. Barry ◽  
...  

In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion–supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.


Sign in / Sign up

Export Citation Format

Share Document