scholarly journals Influence of Estrogen Treatment On ESR1+ and ESR1- Cells In ER+ Breast Cancer: Insights From Single-Cell Analysis of Patient-Derived Xenograft Models

Author(s):  
Hitomi Mori ◽  
Kohei Saeki ◽  
Gregory Chang ◽  
Jinhui Wang ◽  
Xiwei Wu ◽  
...  

Abstract Background: Estrogen typically promotes the progression of hormone-dependent breast cancer through activation of estrogen receptor (ER)-α encoded by ESR1. While estrogen-induced tumor suppression in ER+ breast cancer has been clinically observed as an unexpected outcome of aromatase inhibitor (AI)-resistance, the molecular mechanisms have not yet been fully defined. Characterization of estrogen regulation in two ER+ breast cancer patient-derived xenograft (PDX) models with opposite responses to estrogen offered us an unprecedented opportunity to assess how 17β-estradiol (E2) modulates ER+ cancer.Methods: We established two PDX breast cancer models in mice using ER+ tumors from patients that responded (SC31) or were suppressed (GS3) by exogenous estrogen. In vivo tumor promotion or suppression by estrogen were confirmed through experiments by implanting E2 pellets in mice carrying SC31 or GS3, and then single-cell analysis was performed.Results: E2 promoted SC31 tumor growth but suppressed growth of GS3 in vivo. The E2-mediated suppression of GS3 involves ERα, which was wild-type and not amplified. Single-cell RNA sequencing analysis showed that E2 treatment induced cell cycle promotion in SC31, while E2 induced cell cycle arrest in GS3. However, E2 treatment upregulated the expression of estrogen-regulated genes in both tumors. These gene-expression changes by E2 occurred in both ESR1+ cells and ESR1– cells within the same tumor, demonstrating for the first time the influence of estrogen on ESR1– cells in ER+ breast tumors. E2 also upregulated a tumor suppressor gene, IL24, only in GS3, and lower levels of IL24 were linked to estrogen independence, after three rounds of intermittent E2 treatment. More IL24+ cells were ESR1+ and in G1 phase than IL24– cells. Hallmark apoptosis gene sets were upregulated and the hallmark G2M checkpoint gene set was downregulated in IL24+ cells after E2 treatment.Conclusions: Our study has revealed the effects of estrogen treatment on both ESR1+ and ESR1– cells in ER+ tumors, but not all ER+ cancers respond the same manner to estrogen. SC31 is a tumor that is stimulated by E2, while GS3 is suppressed by E2 via cell cycle arrest. Our results indicate a potential role of IL24 in estrogen-suppressive tumors.

2020 ◽  
Author(s):  
Wenbao Lu ◽  
Meicen Zhou ◽  
Bing Wang ◽  
Xueting Liu ◽  
Bingwei Li

Abstract Background: Dysregulation of cell cycle progression is one of the common features of human cancer cells, however, its mechanism remains unclear. This study aims to clarify the role and the underlying mechanisms of Roquin1 in cell cycle arrest induction in breast cancer.Methods: Public cancer databases were analyzed to identify the expression pattern of Roquin1 in human breast cancers and the significant association with patient survival. Quantitative real-time PCR and western blots were performed to detect the expression of Roquin1 in breast cancer samples and cell lines. Cell counting, MTT assay, flow cytometry, and in vivo study were conducted to investigate the effects of Roquin1 on cell proliferation, cell cycle progression and tumor progression. RNA-sequencing was applied to identify the differential genes and pathways regulated by Roquin1. RNA immunoprecipitation assay, luciferase reporter assay, mRNA half-life detection, RNA affinity binding assay, and RIP-ChIP were used to explore the molecular mechanisms of Roquin1.Results: We showed that Roquin1 expression in breast cancer tissues and cell lines was inhibited, and the reduction in Roquin1 expression was associated with poor overall survival and relapse free survival of patients with breast cancer. Roquin1 overexpression inhibited breast cancer cell proliferation and induced G1/S cell cycle arrest without causing significant apoptosis. In contrast, knockdown of Roquin1 promoted breast cancer cell growth and cycle progression. Moreover, in vivo induction of Roquin1 by adenovirus significantly suppressed breast tumor growth and metastasis. Mechanistically, Roquin1 selectively destabilizing cell cycle–promoting genes, including Cyclin D1, Cyclin E1, cyclin dependent kinase 6 (CDK6) and minichromosome maintenance 2 (MCM2) through targeting the stem–loop structure in the 3’untranslated region (3’UTR) of mRNAs via its ROQ domain, leading to the downregulation of cell cycle–promoting mRNAs.Conclusions: Our findings demonstrated that Roquin1 was a novel breast tumor suppressor and could induce G1/S cell cycle arrest by selectively downregulating the expression of cell cycle–promoting genes, which might as a potential molecular target for breast cancer treatment.


2020 ◽  
Author(s):  
Wenbao Lu ◽  
Meicen Zhou ◽  
Bing Wang ◽  
Xueting Liu ◽  
Bingwei Li

Abstract Background: Dysregulation of cell cycle progression is a common feature of human cancer cells; however, its mechanism remains unclear. This study aims to clarify the role and the underlying mechanisms of Roquin1 in cell cycle arrest in breast cancer.Methods: Public cancer databases were analyzed to identify the expression pattern of Roquin1 in human breast cancers and its association with patient survival. Quantitative real-time PCR and Western blots were performed to detect the expression of Roquin1 in breast cancer samples and cell lines. Cell counting, MTT assays, flow cytometry, and in vivo analyses were conducted to investigate the effects of Roquin1 on cell proliferation, cell cycle progression and tumor progression. RNA sequencing was applied to identify the differentially expressed genes regulated by Roquin1. RNA immunoprecipitation assay, luciferase reporter assay, mRNA half-life detection, RNA affinity binding assay, and RIP-ChIP were used to explore the molecular mechanisms of Roquin1.Results: We showed that Roquin1 expression in breast cancer tissues and cell lines was inhibited, and the reduction in Roquin1 expression was associated with poor overall survival and relapse-free survival of patients with breast cancer. Roquin1 overexpression inhibited cell proliferation and induced G1/S cell cycle arrest without causing significant apoptosis. In contrast, knockdown of Roquin1 promoted cell growth and cycle progression. Moreover, in vivo induction of Roquin1 by adenovirus significantly suppressed breast tumor growth and metastasis. Mechanistically, Roquin1 selectively destabilizes cell cycle–promoting genes, including Cyclin D1, Cyclin E1, cyclin dependent kinase 6 (CDK6) and minichromosome maintenance 2 (MCM2), by targeting the stem–loop structure in the 3' untranslated region (3'UTR) of mRNAs via its ROQ domain, leading to the downregulation of cell cycle–promoting mRNAs.Conclusions: Our findings demonstrated that Roquin1 is a novel breast tumor suppressor and could induce G1/S cell cycle arrest by selectively downregulating the expression of cell cycle–promoting genes, which might be a potential molecular target for breast cancer treatment.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6375
Author(s):  
Hitomi Mori ◽  
Kohei Saeki ◽  
Gregory Chang ◽  
Jinhui Wang ◽  
Xiwei Wu ◽  
...  

A 100% ER positivity is not required for an endocrine therapy response. Furthermore, while estrogen typically promotes the progression of hormone-dependent breast cancer via the activation of estrogen receptor (ER)-α, estrogen-induced tumor suppression in ER+ breast cancer has been clinically observed. With the success in establishing estrogen-stimulated (SC31) and estrogen-suppressed (GS3) patient-derived xenograft (PDX) models, single-cell RNA sequencing analysis was performed to determine the impact of estrogen on ESR1+ and ESR1– tumor cells. We found that 17β-estradiol (E2)-induced suppression of GS3 transpired through wild-type and unamplified ERα. E2 upregulated the expression of estrogen-dependent genes in both SC31 and GS3; however, E2 induced cell cycle advance in SC31, while it resulted in cell cycle arrest in GS3. Importantly, these gene expression changes occurred in both ESR1+ and ESR1– cells within the same breast tumors, demonstrating for the first time a differential effect of estrogen on ESR1– cells. E2 also upregulated a tumor-suppressor gene, IL-24, in GS3. The apoptosis gene set was upregulated and the G2M checkpoint gene set was downregulated in most IL-24+ cells after E2 treatment. In summary, estrogen affected pathologically defined ER+ tumors differently, influencing both ESR1+ and ESR1– cells. Our results also suggest IL-24 to be a potential marker of estrogen-suppressed tumors.


2020 ◽  
Author(s):  
Lixia CAO ◽  
Shaorong Zhao ◽  
Qianxi Yang ◽  
Zhendong Shi ◽  
Jingjing Liu ◽  
...  

Abstract Background The multidrug-resistant (MDR) phenotype is usually accompanied by an abnormal expression of histone deacetylase (HDAC). Given that HDAC is vital in chromatin remodeling and epigenetics, inhibiting the role of HDAC has become an important approach for tumor treatment. However, the effect of HDAC inhibitors on MDR breast cancer has not been elucidated. This study aimed to evaluate the resistance of two MDR breast cancer cell lines to the HDAC-selective inhibitor chidamide (CHI). Methods Cell viability, cell cycle and apoptosis were detected by CCK8, crystal violet staining, EDU staining, TUNEL assay, flow cytometry. The expression of HDAC1, H3K9, H3K18, p53, p21, caspase3/7/9 and the Bcl family was analyzed by western blotting and Quantitative real-time PCR. MDR breast cancer growth suppression by CHI and/or doxorubicin (DOX) in vivo was investigated in a tumor xenograft mouse model. Results The results showed that, CHI combined with DOX showed significant cytotoxicity to MDR breast cancer cells in vitro and in vivo compared with the CHI monotherapy. The cell cycle distribution results showed that CHI caused G0/G1 cell cycle arrest and inhibited cell growth regardless of the addition of DOX. At the same time, Annexin V staining and TUNEL staining results showed that CHI enhanced the number of cell apoptosis in drug-resistant cells. The western blot analysis found that p53 as a tumor suppressor was in a silent state in drug-resistant cells. However, p53 was activated in the CHI-treated and combined treatment groups, which, in turn, activated the p53 up-regulated apoptosis regulator recombinant protein (Puma) and pro-apoptotic protein Bax, downregulated the apoptotic proteins Bcl-xL and Bcl-2, and activated the caspase cascade to induce apoptosis. Conclusion The irreversible cell stress induced by CHI combined with DOX reduced the expression of HDAC1 and activated caspase-dependent apoptosis and p21-mediated growth arrest pathway, which might have been driven by the activation of p53. This provided a strong theoretical basis for exploring the treatment strategy of the combined use of CHI in patients with breast cancer who did not respond to chemotherapy or had cancer progression.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lixia Cao ◽  
Shaorong Zhao ◽  
Qianxi Yang ◽  
Zhendong Shi ◽  
Jingjing Liu ◽  
...  

The multidrug-resistant (MDR) phenotype is usually accompanied by an abnormal expression of histone deacetylase (HDAC). Given that HDAC is vital in chromatin remodeling and epigenetics, inhibiting the role of HDAC has become an important approach for tumor treatment. However, the effect of HDAC inhibitors on MDR breast cancer has not been elucidated. This study aim to demonstrate the potential of chidamide (CHI) combined with the chemotherapy drug doxorubicin (DOX) to overcome chemotherapeutic resistance of breast cancer in vitro and in vivo, laying the experimental foundation for the next clinical application. The results showed that, CHI combined with DOX showed significant cytotoxicity to MDR breast cancer cells in vitro and in vivo compared with the CHI monotherapy. The cell cycle distribution results showed that CHI caused G0/G1 cell cycle arrest and inhibited cell growth regardless of the addition of DOX. At the same time, annexin V staining and TUNEL staining results showed that CHI enhanced the number of cell apoptosis in drug-resistant cells. The western blot analysis found that p53 was activated in the CHI-treated group and combined treatment group, and then the activated p53 up-regulated p21, apoptosis regulator recombinant protein (Puma), and pro-apoptotic protein Bax, down-regulated the apoptotic proteins Bcl-xL and Bcl-2, and activated the caspase cascade to induce apoptosis.


2020 ◽  
Author(s):  
Wenbao Lu ◽  
Meicen Zhou ◽  
Bing Wang ◽  
Xueting Liu ◽  
Bingwei Li

Abstract Background: Dysregulation of cell cycle progression is one of the common features of human cancer cells, however, its mechanism remains unclear. This study aims to clarify the role and the underlying mechanisms of Roquin1 in cell cycle arrest induction in breast cancer. Methods: Public cancer databases were analyzed to identify the expression pattern of Roquin1 in human breast cancers and the significant association with patient survival. Quantitative real-time PCR and western blots were performed to detect the expression of Roquin1 in breast cancer samples and cell lines. Cell counting, MTT assay, flow cytometry, and in vivo study were conducted to investigate the effects of Roquin1 on cell proliferation, cell cycle progression and tumor progression. RNA-sequencing was applied to identify the differential genes and pathways regulated by Roquin1. RNA immunoprecipitation assay, luciferase reporter assay, mRNA half-life detection, RNA affinity binding assay, and RIP-ChIP were used to explore the molecular mechanisms of Roquin1. Results: We showed that Roquin1 expression in breast cancer tissues and cell lines was inhibited, and the reduction in Roquin1 expression was associated with poor overall survival and relapse free survival of patients with breast cancer. Roquin1 overexpression inhibited breast cancer cell proliferation and induced G1/S cell cycle arrest without causing significant apoptosis. In contrast, knockdown of Roquin1 promoted breast cancer cell growth and cycle progression. Moreover, in vivo induction of Roquin1 by adenovirus significantly suppressed breast tumor growth and metastasis. Mechanistically, Roquin1 selectively destabilizing cell cycle–promoting genes, including Cyclin D1, Cyclin E1, cyclin dependent kinase 6 (CDK6) and minichromosome maintenance 2 (MCM2) through targeting the stem–loop structure in the 3’untranslated region (3’UTR) of mRNAs via its ROQ domain, leading to the downregulation of cell cycle–promoting mRNAs. Conclusions: Our findings demonstrated that Roquin1 was a novel breast tumor suppressor and could induce G1/S cell cycle arrest by selectively downregulating the expression of cell cycle–promoting genes, which might as a potential molecular target for breast cancer treatment.


2020 ◽  
Vol 19 ◽  
pp. 153473541990116 ◽  
Author(s):  
Ali H. El-Far ◽  
Noureldien H. E. Darwish ◽  
Shaker A. Mousa

Cellular senescence is a process of physiological growth arrest that can be induced by intrinsic or extrinsic stress signals. Some cancer therapies are associated with senescence of cancer cells with a typical cell cycle arrest. Doxorubicin (Dox) induces senescence by a p53-dependent pathway and telomere dysfunction of numerous cancers. However, cellular senescence induces suppression in proliferation activity, and these cells will remain metabolically active and play an important role in tumor relapse and development of drug resistance. In the current study, we investigated the apoptotic effect of curcumin (Cur), caffeine (Caff), and thymoquinone (TQ) on senescent colon cancer HCT116 and breast cancer MCF7 cell lines treated with Dox. Results showed typical senescence markers including decreased bromodeoxyuridine incorporation, increased accumulation of senescence-associated β-galactosidase (SA-β-gal), cell cycle arrest, and upregulation of p53, P-p53, and p21 proteins. Annexin-V analysis by flow cytometry revealed 2- to 6-fold increases in annexin-V–positive cells in Dox-treated MCF7 and HCT116 cells by Cur (15 µM), Caff (10 mM), and TQ (50 µM; P < .001). In comparison between proliferative and senescent of either HCT116 or MCF7 cells, Caff at 15 mM and TQ at 25 µM induced significant increases in apoptosis of Dox-treated cells compared with proliferative cells ( P < .001). Data revealed that Cur, Caff, and TQ potentially induced apoptosis of both proliferative and senescent HCT116 and MCF7 cells. In vivo and clinical trials are of great importance to validate this result.


2020 ◽  
Vol 12 (10) ◽  
pp. 897-914
Author(s):  
Sasa Benazic ◽  
Zana Besser Silconi ◽  
Andra Jevtovic ◽  
Milena Jurisevic ◽  
Jelena Milovanovic ◽  
...  

Aim: We investigated the antitumor effects of zinc(II) complex with S-propyl thiosalicylic acid [Zn( S-pr-thiosal)2] in 4T1 murine breast cancer model. Results: The Zn( S-pr-thiosal)2 complex reduced primary tumor growth in vivo and induced tumor cell apoptosis. The Zn( S-pr-thiosal)2 complex disrupted the balance between pro- and antiapoptotic Bcl-2 family members in 4T1 cells and induced G1/S cell cycle arrest. The Zn( S-pr-thiosal)2 complex increased the percentage of p16, p21 and p27 positive 4T1 cells. There was a significantly decrease in expression of STAT3 and its targets c-Myc and cyclin D3 in 4T1 cells treated with the Zn( S-pr-thiosal)2 complex thus contributing to G1/S cell cycle arrest and/or apoptosis. Conclusion: Our data suggest that the Zn( S-pr-thiosal)2 complex restricted tumor growth through induction of mitochondrial-driven apoptosis and suppression of cell cycle progression.


Sign in / Sign up

Export Citation Format

Share Document