scholarly journals Photothermally Responsive Conjugated Polymeric Singlet Oxygen Carrier for Phase Change-Controlled and Sustainable Phototherapy for Hypoxic Tumor

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Guo Li ◽  
Ruyi Zhou ◽  
Weili Zhao ◽  
Bo Yu ◽  
Jie Zhou ◽  
...  

Hypoxia significantly compromises the therapeutic performance of photodynamic therapy (PDT) owing to the oxygen level which plays a key role in the production of singlet oxygen (1O2). Herein, the photothermally responsive phase change materials (PCM) are used to encapsulate 1,4-dimethylnaphthalene-functionalized platinum(II)-acetylide conjugated polymer (CP1) with intense near-infrared (NIR) absorption to prepare new 1O2 nanocarriers (CP1-NCs). The 1,4-dimethylnaphthalene moieties in CP1-NCs can trap the 1O2 produced from CP1 under irradiation and form a stable endoperoxide. Then, the endoperoxide undergoes cycloreversion to controllably release 1O2 via the NIR light-triggered photothermal effect of CP1 and controllable phase change of PCM, which can be used for oxygen-independent PDT for hypoxic tumor. Furthermore, the in vivo luminescence imaging-guided synergistic PDT and photothermal therapy showed better efficiency in tumor ablation. The smart design shows the potent promise of CP1-NCs in PCM-controlled and sustainable phototherapy under tumor hypoxic microenvironment, providing new insights for constructing oxygen-independent precise cancer phototherapeutic platform.

2021 ◽  
Vol 17 (6) ◽  
pp. 1131-1147
Author(s):  
Sijin Xiang ◽  
Zhongxiong Fan ◽  
Duo Sun ◽  
Tianbao Zhu ◽  
Jiang Ming ◽  
...  

The overall eradication of biofilm-mode growing bacteria holds significant key to the answer of a series of infection-related health problems. However, the extracellular matrix of bacteria biofilms disables the traditional antimicrobials and, more unfortunately, hampers the development of the anti-infectious alternatives. Therefore, highly effective antimicrobial agents are an urgent need for biofilm-infection control. Herein, a PEGylated palladium nanozyme (Pd-PEG) with peroxidase (POD)-like activity for highly efficient biofilm infection control is reported. Pd-PEG also shows the intrinsic photothermal effect as well as near-infrared (NIR) light-enhanced POD-like activity in the acidic environment, thereby massively destroying the biofilm matrix and killing the adhering bacteria. Importantly, the antimicrobial mechanism of the synergistic treatment based on Pd-PEG+H2O2+NIR combination was disclosed. In vitro and in vivo results illustrated the designed Pd-PEG+H2O2 +NIR treatment reagent possessed outstanding antibacterial and biofilms elimination effects with negligible biotoxicity. This work hopefully facilitates the development of metal-based nanozymes in biofilm related infectious diseases.


Author(s):  
Jiaxin Shen ◽  
Dandan Chen ◽  
Ye Liu ◽  
Guoyang Gao ◽  
Zhihe Liu ◽  
...  

Photodynamic therapy (PDT) is a promising method for cancer therapy and also may initiate unexpected damages to normal cells and tissues. Herein, we developed a near-infrared (NIR) light-activatable nanophotosensitizer, which...


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


2018 ◽  
Vol 115 (3) ◽  
pp. 501-506 ◽  
Author(s):  
Meng Qiu ◽  
Dou Wang ◽  
Weiyuan Liang ◽  
Liping Liu ◽  
Yin Zhang ◽  
...  

A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 520
Author(s):  
Youngsoo Kim ◽  
Kihwan Moon ◽  
Young Lee ◽  
Seokhyeon Hong ◽  
Soon-Hong Kwon

Upconversion (UC) materials can be used to harvest near-infrared (NIR) light and convert it into visible light. Although this improves optical device operating spectral range and efficiency, e.g., solar cells, typical UC material conversion efficiency is too low for practical devices. We propose a cross-patterned slot waveguide constructed from UC material embedded in a high index semiconductor layer to improve UC. Since the slot waveguide mode is induced in the low index UC slot, NIR absorption (~970 nm) increased 25-fold compared with film structures. Furthermore, the spontaneous emission enhancement rate at 660 nm increased 9.6-fold compared to the reference film due to resonance excited in the UC slot (Purcell effect). Thus, the proposed UC slot array structure improved UC efficiency 240-fold considering absorption and emission enhancements. This double resonance UC improvement can be applied to practical optical devices.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 352 ◽  
Author(s):  
Chiara Gargioni ◽  
Mykola Borzenkov ◽  
Laura D’Alfonso ◽  
Paola Sperandeo ◽  
Alessandra Polissi ◽  
...  

We developed an easy and reproducible synthetic method to graft a monolayer of copper sulfide nanoparticles (CuS NP) on glass and exploited their particular antibacterial features. Samples were fully characterized showing a good stability, a neat photo-thermal effect when irradiated in the Near InfraRed (NIR) region (in the so called “biological window”), and the ability to release controlled quantities of copper in water. The desired antibacterial activity is thus based on two different mechanisms: (i) slow and sustained copper release from CuS NP-glass samples, (ii) local temperature increase caused by a photo-thermal effect under NIR laser irradiation of CuS NP–glass samples. This behavior allows promising in vivo applications to be foreseen, ensuring a “static” antibacterial protection tailored to fight bacterial adhesion in the critical timescale of possible infection and biofilm formation. This can be reinforced, when needed, by a photo-thermal action switchable on demand by an NIR light.


2018 ◽  
Vol 8 (12) ◽  
pp. 2613 ◽  
Author(s):  
Lihong He ◽  
Hao Wang ◽  
Hongzhou Zhu ◽  
Yu Gu ◽  
Xiaoyan Li ◽  
...  

This paper mainly concentrates on the thermal conductivity and photo-thermal conversion performance of polyethylene glycol (PEG)/graphene nanoplatelets (GNPs) composite phase change materials (PCMs). The temperature-assisted solution blending method is used to prepare PCM with different mass fraction of GNPs. According to the scanning electron microscope (SEM), GNPs are evenly distributed in the PEG matrix, forming a thermal conduction pathway. The Fourier transform infrared spectra (FT-IR) and X-ray diffraction (XRD) results show that the composites can still inherit the crystallization structure of PEG, moreover, there are only physical reactions between PEG and GNPs rather than chemical reactions. Differential scanning calorimeter (DSC) and thermal conductivity analysis results indicate that it may be beneficial to add a low loading ration of GNPs to obtain the suitable latent heat as well as enhance the thermal conductivity of composites. To investigate the change in the rheological behavior due to the effect of GNPs, the viscosity of the composites was measured as well. The photo-thermal energy conversion experiment indicates that the PEG/GNPs composites show better performance in photothermal energy conversion, moreover, the Ultraviolet-visible-Near Infrared spectroscopy is applied to illustrate the reasons for the higher absorption efficiency of PEG/GNPs for solar irradiation.


Nanomedicine ◽  
2019 ◽  
Vol 14 (16) ◽  
pp. 2189-2207
Author(s):  
Yiming Yu ◽  
Li Zhang ◽  
Miao Wang ◽  
Zhe Yang ◽  
Leping Lin ◽  
...  

Aim: To develop a H2O2/near-infrared (NIR) laser light-responsive nanoplatform (manganese-doped Prussian blue@polypyrrole [MnPB@PPy]) for synergistic chemo/photothermal cancer theranostics. Materials & methods: Doxorubicin (DOX) was loaded onto the surface of polypyrrole shells. The in vitro and in vivo MRI performance and anticancer effects of these nanoparticles (NPs) were evaluated. Results: The MnPB@PPy NPs could not only generate heat under NIR laser irradiation for cancer photothermal therapy but also act as an excellent MRI contrast agent. The loaded DOX could be triggered to release by both NIR light and H2O2 to enhance synergistic therapeutic efficacy. The antitumor effects were confirmed by in vitro cellular cytotoxicity assays and in vivo treatment in a xenograft tumor model. Conclusion: The designed H2O2/NIR light-responsive MnPB@PPy-DOX NPs hold great potential for future biomedical applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weier Bao ◽  
Ming Liu ◽  
Jiaqi Meng ◽  
Siyuan Liu ◽  
Shuang Wang ◽  
...  

AbstractTargeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe3+-to-Fe2+ reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe2+ and acidification of intracellular microenvironment, respectively. The overexpressed H2O2 in mitochondria, highly reactive Fe2+ and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo.


Sign in / Sign up

Export Citation Format

Share Document