photocurrent measurement
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035237
Author(s):  
Masahiko Nakanishi ◽  
Man Hoi Wong ◽  
Tomohiro Yamaguchi ◽  
Tohru Honda ◽  
Masataka Higashiwaki ◽  
...  

CORROSION ◽  
10.5006/3545 ◽  
2020 ◽  
Vol 76 (10) ◽  
pp. 918-929
Author(s):  
Shenghan Zhang ◽  
Chenhao Sun ◽  
Yu Tan

Oxide films were formed on A508-3 steel in simulated pressurized water reactor (PWR) primary water at the temperature of 561 ± 1 K for 168 h with zinc and/or aluminum injection. Corrosion behaviors of oxide films were analyzed by electrochemical polarization, electrochemical impedance spectroscopy, Mott-Schottky plots, photocurrent measurement, scanning electronic microscopy, and x-ray diffraction. The results showed that zinc and aluminum simultaneous injection technology decreased the corrosion current density, increased the impedance value, made the oxide film more compact, and affected the semiconductor properties of the oxide film. The increase in zinc concentration improved the corrosion resistance to some extent. ZnAl2O4 phase, with extremely low solubility and high stability, had been detected in the oxide film; this substance changed the composition of the oxide film and affected the corrosion behavior of A508-3 steel.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ji Wang ◽  
Jikai Yang ◽  
Yiming Zhao ◽  
Guozheng Wang

The porous silicon as substrate material was prepared by metal-assisted chemical etching (MACE) method. The TiO2 nanowire cover layer on porous silicon was prepared by hydrothermal method. Thus, porous Si/TiO2 nanowire heterostructure was obtained. The formation of the porous Si/TiO2 nanowire heterostructure was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results of diffuse reflection spectra (DRS) show that porous Si/TiO2 nanowire has the highest antireflectivity among the four tested samples. Photoelectric catalysis (PEC) and photocurrent measurement show that the porous Si/TiO2 nanowire heterostructure has higher photoelectric catalytic and photocurrent activity than the other samples under the simulated solar light and visible light irradiation. The results showed that the construction of the porous Si/TiO2 nanowire heterostructure improved the photoelectrochemical properties, which is attributed to the heterogeneous effect and window effect.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Junghak Park ◽  
Dipjyoti Das ◽  
Minho Ahn ◽  
Sungho Park ◽  
Jihyun Hur ◽  
...  

Abstract In recent years, MoS2 has emerged as a prime material for photodetector as well as phototransistor applications. Usually, the higher density of state and relatively narrow bandgap of multi-layer MoS2 give it an edge over monolayer MoS2 for phototransistor applications. However, MoS2 demonstrates thickness-dependent energy bandgap properties, with multi-layer MoS2 having indirect bandgap characteristics and therefore possess inferior optical properties. Herein, we investigate the electrical as well as optical properties of single-layer and multi-layer MoS2-based phototransistors and demonstrate improved optical properties of multi-layer MoS2 phototransistor through the use of see-through metal electrode instead of the traditional global bottom gate or patterned local bottom gate structures. The see-through metal electrode utilized in this study shows transmittance of more than 70% under 532 nm visible light, thereby allowing the incident light to reach the entire active area below the source and drain electrodes. The effect of contact electrodes on the MoS2 phototransistors was investigated further by comparing the proposed electrode with conventional opaque electrodes and transparent IZO electrodes. A position-dependent photocurrent measurement was also carried out by locally illuminating the MoS2 channel at different positions in order to gain better insight into the behavior of the photocurrent mechanism of the multi-layer MoS2 phototransistor with the transparent metal. It was observed that more electrons are injected from the source when the beam is placed on the source side due to the reduced barrier height, giving rise to a significant enhancement of the photocurrent.


Author(s):  
Stefano Olivares ◽  
Maria Popovic ◽  
Matteo G. A. Paris

AbstractWe address the performance of an interferometric setup in which a squeezed single photon interferes at a beam splitter with a coherent state. Our analysis in based on both the quantum Fisher information and the sensitivity when a Mach-Zehnder setup is considered and the difference photocurrent is detected at the output. We compare our results with those obtained feeding the interferometer with a squeezed vacuum (with the same squeezing parameter of the squeezed single photon) and a coherent state in order to have the same total number of photons circulating in the interferometer. We find that for fixed squeezing parameter and total number of photons there is a threshold of the coherent amplitude interfering with the squeezed single photon above which the squeezed single photons outperform the performance of squeezed vacuum (showing the highest quantum Fisher information). When the difference photocurrent measurement is considered, we can always find a threshold of the squeezing parameter (given the total number of photons and the coherent amplitude) above which squeezed single photons can be exploited to reach a better sensitivity with respect to the use of squeezed vacuum states also in the presence of non unit quantum efficiency.


MRS Advances ◽  
2015 ◽  
Vol 1 (13) ◽  
pp. 831-837 ◽  
Author(s):  
A. Elfaer ◽  
Y. Wang ◽  
X. H. Li ◽  
J. B. Chou ◽  
S-G. Kim

ABSTRACTWe recently demonstrated a sub-bandgap photoresponse with our wafer-scale Au/TiO2 metallic-semiconductor photonic crystals (MSPhC). The sub-bandgap energy with 590 nm peak could be absorbed in the form of hot electron and injected to TiO2, which provides 5.28 times more energy for photolysis than that of energy absorbed to flat TiO2. If the solar energy already absorbed above 700 nm could be injected to the catalyst, higher than 10 times improvement will be achieved, and above 20% solar to fuel efficiency will be feasible with the robust but inefficient TiO2 catalyst. In order to achieve photocurrent near and above 700 nm spectrum, we deposited gold nanorods on the surface of MSPhC to incur localized surface plasmon (LSP) modes absorption and subsequent injection to the TiO2 catalyst. We used electrophoretic deposition (EPD) method to deposit nanorods on the top, sidewall and bottom well surface of the photonic nanocavities. The deposition of nanorods was achieved reasonably uniform and sparse not to block the optical cavities of MSPhC. Flat gold surfaces were tested at 4 different suspension densities to get the optimum gold nanorods density. Under 10V applied electric field, positively charged gold nanorods at the concentration of 6.52×1013 #/mL could deposit MSPhC surface with the density of 230 #/µm2, which was reasonably uniform and sparse. Preliminary tests show an absorbance increase near 700 nm on flat device coated with gold nanorods. Photocurrent measurement is under way to demonstrate the enhanced hot electron transfer over full visible light and near-infrared solar spectrum.


Sign in / Sign up

Export Citation Format

Share Document