scholarly journals Binary Tree Based Data Gathering Routing Scheme for Wireless Sensor Networks

Author(s):  
Gaurav Bathla ◽  
Lokesh Pawar ◽  
Rohit Bajaj

Abstract Wireless sensor network (WSN) is an emerging area in networking since the era of 21 st century. The major benefits of WSN using sensor nodes make it affordable, scalable, economic and reliable. The limitations of sensor nodes are in terms of fixed and limited power supply, durability, storage and computational facilities which make energy as a vast challenge in deploying sensor nodes in order to prevent them from draining. This paper proposes a novel deployment scheme for connecting the sensor nodes in the form of a 4-sided virtual full binary tree structure. In the proposed scheme, data is expected to reach resource opulence Base Station (BS) via hops as equal to the height of the tree. Also, the stability of the network will increase by an average value of around 82.78% in the range of 49- 98% with existing scheme of the network lifetime with respect to different scenarios. The proposed scheme gives excellent results with a variable number of nodes and changing the size of deployment area of WSN.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Renkuan Feng ◽  
Xiao Wang ◽  
Xiangping Chen ◽  
...  

Tradition wireless sensor networks (WSNs) transmit data by single or multiple hops. However, some sensor nodes (SNs) close to a static base station forward data more frequently than others, which results in the problem of energy holes and makes networks fragile. One promising solution is to use a mobile node as a mobile sink (MS), which is especially useful in energy-constrained networks. In these applications, the tour planning of MS is a key to guarantee the network performance. In this paper, a novel strategy is proposed to reduce the latency of mobile data gathering in a WSN while the routing strategies and tour planning of MS are jointly optimized. First, the issue of network coverage is discussed before the appropriate number of clusters being calculated. A dynamic clustering scheme is then developed where a virtual cluster center is defined as the MS sojourn for data collection. Afterwards, a tour planning of MS based on prediction is proposed subject to minimizing the traveling distance to collect data. The proposed method is simulated in a MATLAB platform to show the overall performance of the developed system. Furthermore, the physical tests on a test rig are also carried out where a small WSN based on an unmanned aerial vehicle (UAV) is developed in our laboratory. The test results validate the feasibility and effectiveness of the method proposed.


2020 ◽  
Vol 11 (1) ◽  
pp. 36-48
Author(s):  
Amiya Bhusan Bagjadab ◽  
Sushree Bibhuprada B. Priyadarshini

Wireless sensor networks are commonly used to monitor certain regions and to collect data for several application domains. Generally, in wireless sensor networks, data are routed in a multi-hop fashion towards a static sink. In this scenario, the nodes closer to the sink become heavily involved in packet forwarding, and their battery power is exhausted rapidly. This article proposes that a special node (i.e., mobile sink) will move in the specified region and collect the data from the sensors and transmit it to the base station such that the communication distance of the sensors will be reduced. The aim is to provide a track for the sink such that it covers maximum sensor nodes. Here, the authors compared two tracks theoretically and in the future will try to simulate the two tracks for the sink movement so as to identify the better one.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Oday Jerew ◽  
Nizar Al Bassam

Recent research shows that significant energy saving can be achieved in wireless sensor networks by using mobile devices. A mobile device roams sensing fields and collects data from sensors through a short transmission range. Multihop communication is used to improve data gathering by reducing the tour length of the mobile device. In this paper we study the trade-off between energy saving and data gathering latency in wireless sensor networks. In particular, we examine the balance between the relay hop count and the tour length of a mobile Base Station (BS). We propose two heuristic algorithms, Adjacent Tree-Bounded Hop Algorithm (AT-BHA) and Farthest Node First-Bounded Hop Algorithm (FNF-BHA), to reduce energy consumption of sensor nodes. The proposed algorithms select groups of Collection Trees (CTs) and a subset of Collection Location (CL) sensor nodes to buffer and forward data to the mobile BS when it arrives. Each CL node receives sensing data from its CT nodes within bounded hop count. Extensive experiments by simulation are conducted to evaluate the performance of the proposed algorithms against another heuristic. We demonstrate that the proposed algorithms outperform the existing work with the mean of the length of mobile BS tour.


Author(s):  
Sahil Verm ◽  
◽  
Sanjukta Gain ◽  

Wireless Sensor Network (WSN) encompasses a set of wirelessly connected sensor nodes in the network for tracking and data gathering applications. The sensors in WSN are constrained in energy, memory, and processing capabilities. Despite the benefits of WSN, the sensors closer to the base station (BS) expels their energy faster. It suffers from hot spot issues and can be resolved by the use of unequal clustering techniques. In this aspect, this paper presents a political optimizer-based unequal clustering scheme (POUCS) for mitigating hot spot problems in WSN. The goal of the POUCS technique is to choose cluster heads (CHs) and determine unequal cluster sizes. The POUCS technique derives a fitness function involving different input parameters to minimize energy consumption and maximize the lifetime of the network. To showcase the enhanced performance of the POUCS technique, a comprehensive experimental analysis takes place, and the detailed comparison study reported the better performance of the POUCS technique over the recent techniques.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 161
Author(s):  
P Balamurugan ◽  
M Shyamala Devi ◽  
V Sharmila

In wireless sensor networks, Sensor nodes are arranged randomly in unkind physical surroundings to collect data and distribute the data to the remote base station. However the sensor nodes have to preserve the power source that has restricted estimation competence. The sensed information is difficult to be transmitted over the sensor network for a long period of time in an energy efficient manner.  In this paper, it finds the problem of communication data between sink nodes and remote data sources via intermediate nodes in sensor field. So this paper proposes a score based data gathering algorithm in wireless sensor networks. The high-level contribution of this study is the enhancement of a score- based data gathering algorithm and the impact of energy entity for Wireless Sensor Networks.  Then the energy and delay of data gathering are evaluated. Unlike PEGASIS and LEACH, the delay for every process of data gathering is considerably lower when SBDG is employed.  The energy consumed per round of data gathering for both SBDG and EE-SBDG is less than half of that incurred with PEGASIS and LEACH. Compared with LEACH and PEGASIS, SBDG and EE-SBDG are fair with node usage because of the scoring system and residual energy respectively.  Overall, the Score-based data gathering algorithm provides a significant solution to maximize the network lifetime as well as minimum delay per round of data gathering.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6954
Author(s):  
Josiane da Costa Vieira Rezende ◽  
Rone Ilídio da Silva ◽  
Marcone Jamilson Freitas Souza

The benefits of using mobile sinks or data mules for data collection in Wireless Sensor Network (WSN) have been studied in several works. However, most of them consider only the WSN limitations and sensor nodes having no more than one data packet to transmit. This paper considers each sensor node having a relatively larger volume of data stored in its memory. That is, they have several data packets to send to sink. We also consider a drone with hovering capability, such as a quad-copter, as a mobile sink to gather this data. Hence, the mobile collector eventually has to hover to guarantee that all data will be received. Drones, however, have a limited power supply that restricts their flying time. Hence, the drone’s energy cost must also be considered to increase the amount of collected data from the WSN. This work investigates the problem of determining the best drone tour for big data gathering in a WSN. We focus on minimizing the overall drone flight time needed to collect all data from the WSN. We propose an algorithm to create a subset of sensor nodes to send data to the drone during its movement and, consequently, reduce its hovering time. The proposed algorithm guarantees that the drone will stay a minimum time inside every sensor node’s radio range. Our experimental results showed that the proposed algorithm surpasses, by up to 30%, the state-of-the-art heuristics’ performance in finding drone tours in this type of scenario.


2005 ◽  
Vol 02 (04) ◽  
pp. 267-278 ◽  
Author(s):  
PETER X. LIU ◽  
NANCY DING

This paper introduces a centralized approach to data gathering and communication for wireless sensor networks. Inspired by the social behaviors of natural ants, we clearly partition the task for the base station and sensor nodes in a wireless sensor network according to their different functions and capabilities. An ant colony optimization method is employed at the base station to form a near-optimal chain for sensor nodes to transmit collected data. Sensor nodes in the network then form a bi-direction chain structure, which is self-adaptive to any minor changes of the network topology. The simulation results show that the developed algorithm, which we call AntChain algorithm, performs much better than many other protocols in terms of energy efficiency, data integrity and life time when the base station is near where the sensor nodes are deployed.


Resource constrained wireless sensor nodes are generally randomly distributed in a given area of interest to sense required information and the sensed data is transmitted to the sink station or Base Station (BS) through various clustering and data routing algorithms. The standard clustering algorithms that are aimed at efficient data routing techniques are Low Energy Adaptive Clustering Hierarchy (LEACH) algorithm , Distributed Energy Efficient Clustering (DEEC) algorithm, Stable Election Protocol (SEP) and various others. Most of these algorithms are the various variants of LEACH. Our proposed scheme of data gathering and routing is based on a two hop structure wherein the Cluster Leader (CL) forwards the aggregated received data from the Cluster members to the Sink directly. The Chance-value that determines the Cluster Leader in a round is decided by a combination of parameters specific to the Sensor nodes in the cluster. In our simulation approach we have also tried to analyze the effect of changing density of sensor nodes in the select area. Thus in our proposed scheme, we embark on a fixed Clustering scheme where the CL is selected dynamically so as to extend the network’s lifetime and achieve enhanced throughput in comparison to the standard algorithms like DEEC, SEP and LEACH.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


Sign in / Sign up

Export Citation Format

Share Document