scholarly journals Biochar From Feedstock: A Strategy To Improve Agronomic Performances And Microbial Biomass of Tomato (Solanum Lycopersicum I.) Plant.

Author(s):  
Seun ADEBAJO ◽  
Folasade OLUWATOBI ◽  
Pius AKINTOKUN ◽  
Abidemi OJO ◽  
Ronke AKINTOKUN ◽  
...  

Abstract Tomato is beneficial to human health because it contains valuable vitamins such as vitamins A, C and several minerals. However, to meet up with the demands of the ever increasing population, there is need to improve tomato production. This research, investigated the impact of biochar derived from rice husk on agronomic performances of tomato plant. The rice husk biochar pyrolysed at 350 ºC was amended with soil at four different application rates: 0, 2.5, 5.0 and 7.5 t/ha. Physicochemical property of soil was conducted using Mid Infrared Reflectance Spectroscopy method. Impact of biochar on Microbial Biomass Carbon, Microbial Biomass Nitrogen and Microbial Biomass Phosphorous was conducted using fumigation extraction method and monitored at three functional stages. Biochar application appreciably increase the soil physicochemical properties such as pH, Ca, Na, H+, S, P, B, Zn and cation exchangeable capacity. Biochar amended soil significantly enhanced tomato height, fruit yields and weight. The ratio of Microbial biomass C: N: P for biochar amended soil at 7.5 t/ha (B3) was 302.30: 18.81: 11.75 µg/g, compared to control, which was 242.12: 18.30: 11.49 µg/g. This study revealed that biochar amendments significantly (p < 0.05) increased the yields and microbial biomass of tomato plant.

2016 ◽  
Vol 8 (2) ◽  
pp. 1126-1132 ◽  
Author(s):  
Sanjay Arora ◽  
Divya Sahni

In modern agriculture, chemical pesticides are frequently used in agricultural fields to increase crop production. Besides combating insect pests, these insecticides also affect the activity and population of beneficial soil microbial communities. Chemical pesticides upset the activities of soil microbes and thus may affect the nutritional quality of soils. This results in serious ecological consequences. Soil microbes had different response to different pesticides. Soil microbial biomass that plays an important role in the soil ecosystem where they have crucial role in nutrient cycling. It has been reported that field application of glyphosate increased microbial biomass carbon by 17% and microbial biomass nitrogen by 76% in nine soils at 14 days after treatment. The soil microbial biomass C increased significantly upto 30 days in chlorpyrifos as well as cartap hydrochloride treated soil, but thereafter decreased progressively with time. Soil nematodes, earthworms and protozoa are affected by field application rates of the fungicide fenpropimorph and other herbicides. Thus, there is need to assess the effect of indiscriminate use of pesticides on soil microorganisms, affecting microbial activity and soil fertility.


2008 ◽  
Vol 54 (No. 5) ◽  
pp. 212-218 ◽  
Author(s):  
J. Černý ◽  
J. Balík ◽  
M. Kulhánek ◽  
V. Nedvěd

Microbial biomass nitrogen and carbon were studied in long-term field experiments with continuous cultivation of silage maize and with crop rotation. A positive effect of organic fertilizers on the microbial biomass nitrogen and the carbon content in soil was observed. Statistically significant effect of organic fertilizers on the higher content of microbial biomass C and N was established in the first year after their application. During the application the content of microbial biomass carbon and nitrogen decreased, but there were higher biomass C and N contents compared to control, even without statistical significance. A negative effect on microbial biomass carbon and nitrogen content in soil came from the application of mineral nitrogen fertilizers in experiments with maize. Statistically significant effect of mineral N fertilizers was observed after their application. In the course of the N fertilizers application the content of microbial biomass carbon and nitrogen was lower than control. No statistically significant effects of mineral nitrogen fertilizers on the microbial biomass nitrogen and carbon content were observed in field experiments with crop rotation over the eight years of experiment duration. The higher effect of mineral and organic fertilizers application on the changes in microbial biomass C and N was reported in experiments with continuous cultivation of maize compared to experiments with crop rotation.


2019 ◽  
Vol 56 (3) ◽  
pp. 305-311
Author(s):  
Debasis Purohit ◽  
Mitali Mandal ◽  
Avisek Dash ◽  
Kumbha Karna Rout ◽  
Narayan Panda ◽  
...  

An effective approach for improving nutrient use efficiency and crop productivity simultaneously through exploitation of biological potential for efficient acquisition and utilization of nutrients by crops is very much needed in this current era. Thus, an attempt is made here to investigate the impact of long term fertilization in the soil ecology in rice-rice cropping system in post kharif - 2015 in flooded tropical rice (Oryza sativa L.) in an acidic sandy soil. The experiment was laid out in a randomized block design with quadruplicated treatments. Soil samples at different growth stages of rice were collected from long term fertilizer experiment.The studied long-term manured treatments included 100 % N, 100% NP, 100 % NPK, 150 % NPK and 100 % NPK+FYM (5 t ha-1) and an unmanured control. Soil fertility status like SOC content and other available nutrient content has decreased continuously towards the crop growth period. Comparing the results of different treatments, it was found that the application of 100% NPK + FYM exhibited highest nutrient content in soils. With regards to microbial properties it was also observed that the amount of microbial biomass carbon (MBC) and microbial biomass nitrogen ( MBN) showed highest accumulation in 100 % NPK + FYM at maximum tillering stage of the rice. The results further reveal that dehydrogenase activity was maximum at panicle initiation stage and thereafter it decreases. Soil organic carbon content, MBC, MBN and dehydrogenase activity were significantly correlated with each other. Significant correlations were observed between rice yield and MBC at maturity stage( R2 = 0.94**) and panicle initiation stage( R2 = 0.92**) and available nitrogen content at maturity stage( R2 = 0.91**).


1999 ◽  
Vol 79 (1) ◽  
pp. 73-84 ◽  
Author(s):  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
G. Wen ◽  
R. P. Zentner ◽  
J. Schoenau ◽  
...  

Measurements of seasonal changes in soil biochemical attributes can provide valuable information on how crop management and weather variables influence soil quality. We sampled soil from the 0- to 7.5-cm depth of two long-term crop rotations [continuous wheat (Cont W) and both phases of fallow-wheat (F–W)] at Swift Current, Saskatchewan, from early May to mid-October, 11 times in 1995 and 9 times in 1996. The soil is a silt loam, Orthic Brown Chernozem with pH 6.0, in dilute CaCl2. We monitored changes in organic C (OC) and total N (TN), microbial biomass C (MBC), light fraction C and N (LFC and LFN), mineralizable C (Cmin) and N (Nmin), and water-soluble organic C (WSOC). All biochemical attributes, except MBC, showed higher values for Cont W than for F–W, reflecting the historically higher crop residue inputs, less frequent tillage, and drier conditions of Cont W. Based on the seasonal mean values for 1996, we concluded that, after 29 yr, F–W has degraded soil organic C and total N by about 15% compared to Cont W. In the same period it has degraded the labile attributes, except MBC, much more. For example, WSOC is degraded by 22%, Cmin and Nmin by 45% and LFC and LFN by 60–75%. Organic C and TN were constant during the season because one year's C and N inputs are small compared to the total soil C or N. All the labile attributes varied markedly throughout the seasons. We explained most of the seasonal variability in soil biochemical attributes in terms of C and N inputs from crop residues and rhizodeposition, and the influences of soil moisture, precipitation and temperature. Using multiple regression, we related the biochemical attributes to soil moisture and the weather variables, accounting for 20% of the variability in MBC, 27% of that of Nmin, 29% for LFC, 52% for Cmin, and 66% for WSOC. In all cases the biochemical attributes were negatively related to precipitation, soil moisture, temperature and their interactions. We interpreted this to mean that conditions favouring decomposition of organic matter in situ result in decreases in these attributes when they are measured subsequently under laboratory conditions. We concluded that when assessing changes in OC or TN over years, measurements can be made at any time during a year. However, if assessing changes in the labile soil attributes, several measurements should be made during a season or, measurements be made near the same time each year. Key words: Microbial biomass, carbon, nitrogen, mineralization, water-soluble-C, light fraction, weather variables


2007 ◽  
Vol 87 (4) ◽  
pp. 399-404 ◽  
Author(s):  
M R Carter ◽  
C. Noronha

Intensive forms of soil management occur in potato (Solanum tuberosum L.) production systems, but little is known about the influence of such practices on soil biological properties. Microbial biomass C, phosphatase activity, and the abundance (number), richness (family groups), and diversity of soil micro-arthropods (Collembola and mites) were compared in conventional and adjacent integrated pest management (IPM) systems of 3-yr potato rotations, established on fine sandy loams in Prince Edward Island, Atlantic Canada. The study was conducted at two sites over a 2-yr period. Soil microbial parameters were generally similar between management systems. Management differences showed some effect on micro-arthropod abundance and richness in three of the eight comparisons. Under optimum soil-water conditions, both Collembola and mite communities increased over the growing season regardless of management system. Key words: Soil management for potato, Collembola, mites, soil microbial biomass carbon, acid phosphatase, integrated pest management


1988 ◽  
Vol 68 (3) ◽  
pp. 463-473 ◽  
Author(s):  
V. V. S. R. GUPTA ◽  
J. R. LAWRENCE ◽  
J. J. GERMIDA

This study investigated the impact of repeated application of S° fertilizer on microbial and biochemical characteristics of two Grey Luvisolic soils. The Waitville pasture plots received Agri-Sul at a rate of 22 or 44 kg S° ha−1 yr−1 for 5 yr, whereas the Loon River canola-summerfallow plots received single or double applications of Flow-able Sulfur (50 kg S° ha−1) or Agri-Sul (100 kg S° ha−1). Application of S° fertilizer significantly decreased the pH in both soils. Organic C declined in S°-treated plots of the Waitville soil, and there was a narrowing of C:N:S ratios in both soils. Application of S° fertilizer significantly increased the total S, HI-S and sulfate sulfur levels of both soils. There was a 29–45% and 2–51% decline in microbial biomass carbon content due to S° fertilizer application in Waitville and Loon River soils, respectively. Repeated application of S° also resulted in a decline in respiration, dehydrogenase, urease, alkaline phosphatase and arylsulfatase activities, along with populations of protozoa, algae and nitrifiers in both soils. Significant correlations observed among related characteristics further emphasized the treatment effects. These results indicate that the impact of repeated application of S° fertilizer on microbial biomass and activity should be considered when recommending S° as a fertilizer for sulfur-deficient soils. Key words: Sulfur (elemental), microbial biomass, dehydrogenase, urea, phosphomonoesterases, arylsulfatase


Soil Research ◽  
2014 ◽  
Vol 52 (4) ◽  
pp. 366 ◽  
Author(s):  
Andong Shi ◽  
Petra Marschner

Decomposition of mixed residues is common in many ecosystems, with residues from different species or above- and below-ground residues from the same species. Although decomposition of litter mixtures has been extensively studied, little is known about the changes in microbial biomass carbon (C) and available nitrogen (N) in the early stages of decomposition of mixtures of shoots and roots. An incubation experiment was carried out in a sandy clay loam with shoot and root residues of two grasses, annual barley (Hordeum vulgare L.), and perennial Stipa sp., added separately or as mixtures. Soil respiration was measured continuously, and soil microbial biomass C, extractable C and available N were measured by destructive sampling on days 0, 3, 6, 9, 12 and 18. Cumulative respiration and microbial biomass C concentration were higher with barley shoots alone or in mixtures than with Stipa residues alone. In the mixture of Stipa shoots and roots, which had similar decomposition rates when incubated individually, the measured cumulative respiration was greater than the expected value (average of the cumulative respiration of the individual residues), but this did not result in greater microbial biomass or changes in available N concentration compared with the individual residues. Cumulative respiration of barley shoots alone was higher than of barley root and Stipa shoot incubated individually. In the mixtures of barley shoots with barley roots or Stipa shoots, the measured cumulative respiration was either lower than the expected value or similar. Compared with barley shoots alone, microbial biomass C concentrations in the mixtures were generally lower in the first 3 days. It is concluded that mixing of residues with similar decomposition rates can stimulate microbial activity (respiration) but has little effect on microbial growth or concentrations of available N. Further, our findings provide information about extractable C and N dynamics during the early stages of decomposition of individual residue and residue mixtures.


2012 ◽  
Vol 599 ◽  
pp. 124-127
Author(s):  
Cheng Hu Zhang ◽  
Ting Ting Song ◽  
Ju Liu ◽  
Hui Juan Xia ◽  
Jian Zhu Wang

Natural restoration slope and vegetation-growing concrete slope were selected as plots. Soil water content (SWC), pH, and soil organic matter, total nitrogen content (TN), total organic carbon (TOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), basal respiration, microbial quotient and metabolic quotient (qCO2) were analyzed. The main results show that: Soil organic matter, TN and MBC of 0-10 cm soil in the natural restoration slope are significantly lower than that in the vegetation-growing concrete slopes at 0.05 level. Both MBC and MBN show a highly significant positive correlation with soil organic matter and TN. Microbial quotient shows a highly significant negative correlation with TOC and MBN, and shows a significant negative correlation with MBC. The qCO2 shows a highly significant negative correlation with pH, and a significant negative correlation with MBC. The vegetation-growing concrete technology can improve the soil ecosystem in the impaired slope.


2007 ◽  
Vol 74 (1) ◽  
pp. 216-224 ◽  
Author(s):  
Nancy R. Smith ◽  
Barbara E. Kishchuk ◽  
William W. Mohn

ABSTRACT Wildfires and harvesting are important disturbances to forest ecosystems, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. This study was conducted at sites with similar soil, climatic, and other properties in a spruce-dominated boreal forest near Chisholm, Alberta, Canada. Soil microbial communities were assessed following four treatments: control, harvest, burn, and burn plus timber salvage (burn-salvage). Burn treatments were at sites affected by a large wildfire in May 2001, and the communities were sampled 1 year after the fire. Microbial biomass carbon decreased 18%, 74%, and 53% in the harvest, burn, and burn-salvage treatments, respectively. Microbial biomass nitrogen decreased 25% in the harvest treatment, but increased in the burn treatments, probably because of microbial assimilation of the increased amounts of available NH4 + and NO3 − due to burning. Bacterial community composition was analyzed by nonparametric ordination of molecular fingerprint data of 119 samples from both ribosomal intergenic spacer analysis (RISA) and rRNA gene denaturing gradient gel electrophoresis. On the basis of multiresponse permutation procedures, community composition was significantly different among all treatments, with the greatest differences between the two burned treatments versus the two unburned treatments. The sequencing of DNA bands from RISA fingerprints revealed distinct distributions of bacterial divisions among the treatments. Gamma- and Alphaproteobacteria were highly characteristic of the unburned treatments, while Betaproteobacteria and members of Bacillus were highly characteristic of the burned treatments. Wildfire had distinct and more pronounced effects on the soil microbial community than did harvesting.


2018 ◽  
pp. 1-7
Author(s):  
O. A. Babalola ◽  
M. O. Adigun ◽  
I. O. Abiola

Millions of organic fertilizers are produced annually all over the world. Substantial quantities of these were crop residues and the remaining being animal waste based. Meanwhile maintaining and improving soil fertility in the tropic is essential for increasing food production for rapidly expanding the population. This project work, therefore, investigated the variation in soil chemical and microbiological properties as a result of yearly amendment with compost. The experimental site was the Organic Agricultural Farm located within the Federal University of Agriculture, Abeokuta. Soil samples were collected between 0 – 15 cm depth using soil auger and the samples were analyzed for the following soil parameters; total viable counts, total fungal counts, microbial biomass carbon, microbial biomass nitrogen, percentage organic carbon, microarthropod counts and earthworm counts. The experiment was a split-plot design using 2 varieties of tomato x 3 levels of compost and two durations of application. The variations include one improved variety (UCB 8) and a local variety (Beske), rate of compost – (0, 10, and 20) kg/ha and years of application (one and two years). Results generally showed that: duration has a significant effect on viable counts, microarthropod counts, microbial biomass P, microbial biomass C and percentage organic carbon but has no significant effect on fungal counts, microbial biomass nitrogen, and earthworm counts. The results indicate that application of compost manure is the preferred option to enhance SOM accumulation, improve soil fertility and quality, and increase tomato yield.


Sign in / Sign up

Export Citation Format

Share Document