scholarly journals Lytic Bacteriophages against Mutidrug-Resistant Klebsiella pneumoniae: Development of an Effective Phage-based Approach to Combat Multidrug Resistance

Author(s):  
Willames Martins ◽  
Juliana Cino ◽  
Mei Li ◽  
Michael Lenzi ◽  
Kirsty Sands ◽  
...  

Abstract This study aimed to develop a phage-based approach against Klebsiella pneumoniae sequence type (ST16). Phages were investigated using sewage samples from Brazil, Bangladesh, Saudi Arabia, Thailand and the United Kingdom. After isolation, the bacteriophages were submitted to microbiological, structural and genomic characterisation. The best phages were selected to integrate a phage-cocktail for potential use in humans. In vitro and in vivo experiments were performed to demonstrate the efficiency of this approach using a collection of 56 clinical strains of K. pneumoniae ST16 with distinct genetic backgrounds. Anti-biofilm activity, synergism with meropenem and activity in human body fluids were also evaluated. Fourteen lytic phages were isolated, belonging to Autographiviridae, Ackermannviridae, Demerecviridae, Drexlerviridae, and Myoviridae families. The viruses demonstrated good activity against our collection of K. pneumoniae ST16 at a different range of temperatures but also against other important Klebsiella clones such as ST11, ST15, and ST258. The cocktail Katrice-16 was highly active in vitro against K. pneumoniae ST16 collection consisting of isolates from several disparate countries. It demonstrated good in vivo activity in the Galleria mellonella model, anti-biofilm and synergic activity with meropenem. In addition, we also showed the Katrice-16 activity in human body fluids. Our results reinforce how effective bacteriophages can be, supporting their capacity for human clinical use to combat prevalent antimicrobial resistance bacterial clones.

2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Dalila Mil-Homens ◽  
Maria Martins ◽  
José Barbosa ◽  
Gabriel Serafim ◽  
Maria J. Sarmento ◽  
...  

Klebsiella pneumoniae, one of the most common pathogens found in hospital-acquired infections, is often resistant to multiple antibiotics. In fact, multidrug-resistant (MDR) K. pneumoniae producing KPC or OXA-48-like carbapenemases are recognized as a serious global health threat. In this sense, we evaluated the virulence of K. pneumoniae KPC(+) or OXA-48(+) aiming at potential antimicrobial therapeutics. K. pneumoniae carbapenemase (KPC) and the expanded-spectrum oxacillinase OXA-48 isolates were obtained from patients treated in medical care units in Lisbon, Portugal. The virulence potential of the K. pneumonia clinical isolates was tested using the Galleria mellonella model. For that, G. mellonella larvae were inoculated using patients KPC(+) and OXA-48(+) isolates. Using this in vivo model, the KPC(+) K. pneumoniae isolates showed to be, on average, more virulent than OXA-48(+). Virulence was found attenuated when a low bacterial inoculum (one magnitude lower) was tested. In addition, we also report the use of a synthetic polycationic oligomer (L-OEI-h) as a potential antimicrobial agent to fight infectious diseases caused by MDR bacteria. L-OEI-h has a broad-spectrum antibacterial activity and exerts a significantly bactericidal activity within the first 5-30 min treatment, causing lysis of the cytoplasmic membrane. Importantly, the polycationic oligomer showed low toxicity against in vitro models and no visible cytotoxicity (measured by survival and health index) was noted on the in vivo model (G. mellonella), thus L-OEI-h is foreseen as a promising polymer therapeutic for the treatment of MDR K. pneumoniae infections.


2021 ◽  
Vol 11 ◽  
Author(s):  
Janet Y. Nale ◽  
Gurinder K. Vinner ◽  
Viviana C. Lopez ◽  
Anisha M. Thanki ◽  
Preeda Phothaworn ◽  
...  

Salmonella spp. is a leading cause of gastrointestinal enteritis in humans where it is largely contracted via contaminated poultry and pork. Phages can be used to control Salmonella infection in the animals, which could break the cycle of infection before the products are accessible for consumption. Here, the potential of 21 myoviruses and a siphovirus to eliminate Salmonella in vitro and in vivo was examined with the aim of developing a biocontrol strategy to curtail the infection in poultry and swine. Together, the phages targeted the twenty-three poultry and ten swine prevalent Salmonella serotype isolates tested. Although individual phages significantly reduced bacterial growth of representative isolates within 6 h post-infection, bacterial regrowth occurred 1 h later, indicating proliferation of resistant strains. To curtail bacteriophage resistance, a novel three-phage cocktail was developed in vitro, and further investigated in an optimized Galleria mellonella larva Salmonella infection model colonized with representative swine, chicken and laboratory strains. For all the strains examined, G. mellonella larvae given phages 2 h prior to bacterial exposure (prophylactic regimen) survived and Salmonella was undetectable 24 h post-phage treatment and throughout the experimental time (72 h). Administering phages with bacteria (co-infection), or 2 h post-bacterial exposure (remedial regimen) also improved survival (73–100% and 15–88%, respectively), but was less effective than prophylaxis application. These pre-livestock data support the future application of this cocktail for further development to effectively treat Salmonella infection in poultry and pigs. Future work will focus on cocktail formulation to ensure stability and incorporation into feeds and used to treat the infection in target animals.


2019 ◽  
Author(s):  
L. Blasco ◽  
A. Ambroa ◽  
R. Trastoy ◽  
E. Perez-Nadales ◽  
F. Fernández-Cuenca ◽  
...  

ABSTRACTThe multidrug resistance (MDR) among pathogenic bacteria is jeopardizing the worth of antimicrobials, which had previously changed medical sciences. In this study, we used bioinformatic tools to identify the endolysins ElyA1 and ElyA2 (GH108-PG3 family) present in the genome of bacteriophages Ab1051Φ and Ab1052Φ, respectively. The muralytic activity of these endolysins over MDR clinical isolates (Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae) was tested using the turbidity reduction assay. The minimal inhibitory concentrations (MICs) of endolysin, colistin and their combination were determined using the microdilution checkerboard method. The antimicrobial activity of the combinations was confirmed by time kill curves and in vivo assays in larvae of Galleria mellonella. Our results showed that ElyA1 displayed activity against all 25 strains of A. baumannii and P. aeruginosa tested and against 13 out of 17 strains of K. pneumoniae. No activity was detected when assays were done with endolysin ElyA2. The combined antimicrobial activity of colistin and endolysin ElyA1 yielded a reduction in the colistin MIC for all strains studied, except K. pneumoniae. These results were confirmed in vivo in G. mellonella survival assays. In conclusion, the combination of colistin with new endolysins such as ElyA1 could increase the bactericidal activity and reduce the MIC of the antibiotic, thus also reducing the associated toxicity.IMPORTANCEThe development of multiresistance by pathogen bacteria increases the necessity of the development of new antimicrobial strategies. In this work, we combined the effect of the colistin with a new endolysin, ElyA1, from a bacteriophage present in the clinical strain of Acinetobacter baumannii Ab105. ElyA1 is a lysozyme-like family (GH108-GP3), whose antimicrobial activity was described for first time in this work. Also, another endolysin, ElyA2, with the same origin and family, was characterized but in this case no activity was detected. ElyA1 presented lytic activity over a broad spectrum of strains from A. baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. When colistin was combined with ElyA1 an increase of the antimicrobial activity was observed with a reduced concentration of colistin, and this observation was also confirmed in vivo in Galleria mellonella larvae. The combination of colistin with new endolysins as ElyA1 could increase the bactericidal activity and lowering the MIC of the antibiotic, thus also reducing the associated toxicity.


Author(s):  
Olga Pacios ◽  
Laura Fernández-García ◽  
Ines Bleriot ◽  
Lucia Blasco ◽  
Mónica González-Bardanca ◽  
...  

Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that employs different strategies (resistance and persistence) to counteract antibiotic treatments. This study aimed to search for new means of combatting imipenem-resistant and persister strains of K. pneumoniae by repurposing the anticancer drug mitomycin C as an antimicrobial agent and by combining the drug and the conventional antibiotic imipenem with the lytic phage vB_KpnM-VAC13. Several clinical K. pneumoniae isolates were characterized, and an imipenem-resistant isolate (harbouring OXA245 ß-lactamase) and a persister isolate were selected for study. The mitomycin C and imipenem MICs for both isolates were determined by the broth microdilution method. Time-kill curve data were obtained by OD 600 measurement and CFU enumeration in the presence of each drug alone and with the phage. The frequency of occurrence of mutants resistant to each drug and the combinations was also calculated, and the efficacy of the combination treatments was evaluated using an in vivo infection model ( Galleria mellonella ). The lytic phage vB_KpnM-VAC13 and mitomycin C had synergistic effects on imipenem-resistant and persister isolates, both in vitro and in vivo. The phage-imipenem combination successfully killed the persisters but not the imipenem-resistant isolate harbouring OXA245 ß-lactamase. Interestingly, the combinations decreased the emergence of in vitro resistant mutants of both isolates. Combinations of the lytic phage vB_KpnM-VAC13 with mitomycin C and imipenem were effective against the persister K. pneumoniae isolate. The lytic phage/mitomycin C combination was also effective against imipenem-resistant K. pneumoniae strains harbouring OXA245 ß-lactamase.


2021 ◽  
Vol 7 (1) ◽  
pp. 26
Author(s):  
Angela Maione ◽  
Elisabetta de Alteriis ◽  
Federica Carraturo ◽  
Stefania Galdiero ◽  
Annarita Falanga ◽  
...  

The antibiofilm activity of a gH625 analogue was investigated to determine the in vitro inhibition and eradication of a dual-species biofilm of Candida albicans and Klebsiella pneumoniae, two leading opportunistic pathogens responsible for several resistant infections. The possibility of effectively exploiting this peptide as an alternative anti-biofilm strategy in vivo was assessed by the investigation of its efficacy on the Galleria mellonella larvae model. Results on larvae survival demonstrate a prophylactic efficacy of the peptide towards the infection of each single microorganism but mainly towards the co-infection. The expression of biofilm-related genes in vivo showed a possible synergy in virulence when these two species co-exist in the host, which was effectively prevented by the peptide. These findings provide novel insights into the treatment of medically relevant bacterial–fungal interaction.


2012 ◽  
Vol 1 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Malachy McCann ◽  
André L. S. Santos ◽  
Bianca A. da Silva ◽  
Maria Teresa V. Romanos ◽  
Alexandre S. Pyrrho ◽  
...  

Abstract 1,10-Phenanthroline (phen, 5), 1,10-phenanthroline-5,6-dione (phendione, 6), [Cu(phendione)3](ClO4)2·4H2O (12) and [Ag(phendione)2]ClO4 (13) are highly active, in vitro, against a range of normal and cancerous mammalian cells, fungal and insect cell lines, with the metal complexes offering a clear enhancement in activity. Cytoselectivity was not observed between the tumorigenic and non-tumorigenic mammalian lines. In in vivo tests, using Galleria mellonella and Swiss mice, all four compounds were well tolerated in comparison to the clinical agent, cisplatin. In addition, blood samples taken from the Swiss mice showed that the levels of the hepatic enzymes, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), remained unaffected. Immunocompromised nude mice showed a much lower tolerance to 13 and, subsequently, when these mice were implanted with Hep-G2 (hepatic) and HCT-8 (colon) human-derived tumors, there was no influence on tumor growth.


2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 819
Author(s):  
Nicolai Rügen ◽  
Timothy P. Jenkins ◽  
Natalie Wielsch ◽  
Heiko Vogel ◽  
Benjamin-Florian Hempel ◽  
...  

Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document