scholarly journals Low-Dose IL-34 Has No Effect on Osteoclastogenesis But Promotes Osteogenesis of Hbmscs Partly Via Activation of The PI3K/AKT And ERK Signaling Pathways 

2020 ◽  
Author(s):  
Jianxiang Xu ◽  
Jinwu Bai ◽  
Huiming Zhong ◽  
Zhihui Kuang ◽  
Chengwei Zhou ◽  
...  

Abstract Background: Inflammatory microenvironment is significant to the differentiation and function of mesenchymal stem cells(MSCs). It evidentially influences the osteoblastogenesis of MSCs. IL-34, a newly discovered cytokine, playing a key role in metabolism. However, the research on its functional role in the osteogenesis of MSCs was rarely reported. Here, we described the regulatory effects of low-dose IL-34 on both osteoblastogenesis and osteoclastogenesis.Methods: We performed the osteogenic effects of hBMSCs by exogenous and overexpressed IL-34 in vitro, so was the osteoclastogenesis effects of mBMMs by extracellular IL-34. CCK-8 was used to assess the effect of IL-34 on the viability of hBMSCs and mBMMs. ALP staining, ARS and TRAP staining were used to evaluate ALP activity, mineral deposition and osteoclastogenesis, respectively. qRT-PCR and Western blotting analysis were performed to detect the expression of target genes and proteins. ELISA was used to evaluate the concentrations of IL-34. In vivo, a rat tibial osteotomy model and an OVX model were established. Radiographic analysis and histological evaluation were performed to confirm the therapeutic effects of IL-34 in fracture healing and osteoporosis. Statistical differences were evaluated by two-tailed Student’s t-test, one-way ANOVA with Bonferroni’s post hoc test and two-way ANOVA with Bonferroni multiple comparisons post hoc test in the comparison of 2 groups, more than 2 groups and different time points of treated groups, respectively. Results: Promoted osteoblastogenesis of hBMSCs was observed after treated by exogenous or overexpressed IL-34 in vitro, confirmed by increased mineral deposits and ALP activity. Furthermore, exogenous or overexpressed IL-34 enhanced the expression of p-AKT and p-ERK. The specific AKT and ERK signaling pathway inhibitors suppressed the enhancement of osteoblastogenesis induced by IL-34. In a rat tibial osteotomy model, imaging and histological analyses testified the local injection of exogenous IL-34 improved bone healing. However, the additional IL-34 has no influence on both osteoclastogenesis of mBMMs in vitro and osteoporosis of OVX model of rat in vivo. Conclusions: Collectively, our study demonstrate that low-dose IL-34 regulates osteogenesis of hBMSCs partly via the PIK/AKT and ERK signaling pathway and enhances fracture healing, with neither promoting nor preventing osteoclastogenesis in vitro and osteoporosis in vivo.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianxiang Xu ◽  
Lifeng Fu ◽  
Jinwu Bai ◽  
Huiming Zhong ◽  
Zhihui Kuang ◽  
...  

Abstract Background Inflammatory microenvironment is significant to the differentiation and function of mesenchymal stem cells (MSCs). It evidentially influences the osteoblastogenesis of MSCs. IL-34, a newly discovered cytokine, playing a key role in metabolism. However, the research on its functional role in the osteogenesis of MSCs was rarely reported. Here, we described the regulatory effects of low-dose IL-34 on both osteoblastogenesis and osteoclastogenesis. Methods We performed the osteogenic effects of hBMSCs by exogenous and overexpressed IL-34 in vitro, so were the osteoclastogenesis effects of mBMMs by extracellular IL-34. CCK-8 was used to assess the effect of IL-34 on the viability of hBMSCs and mBMMs. ALP, ARS, and TRAP staining was used to evaluate ALP activity, mineral deposition, and osteoclastogenesis, respectively. qRT-PCR and Western blotting analysis were performed to detect the expression of target genes and proteins. ELISA was used to evaluate the concentrations of IL-34. In vivo, a rat tibial osteotomy model and an OVX model were established. Radiographic analysis and histological evaluation were performed to confirm the therapeutic effects of IL-34 in fracture healing and osteoporosis. Statistical differences were evaluated by two-tailed Student’s t test, one-way ANOVA with Bonferroni’s post hoc test, and two-way ANOVA with Bonferroni multiple comparisons post hoc test in the comparison of 2 groups, more than 2 groups, and different time points of treated groups, respectively. Results Promoted osteoblastogenesis of hBMSCs was observed after treated by exogenous or overexpressed IL-34 in vitro, confirmed by increased mineral deposits and ALP activity. Furthermore, exogenous or overexpressed IL-34 enhanced the expression of p-AKT and p-ERK. The specific AKT and ERK signaling pathway inhibitors suppressed the enhancement of osteoblastogenesis induced by IL-34. In a rat tibial osteotomy model, imaging and histological analyses testified the local injection of exogenous IL-34 improved bone healing. However, the additional IL-34 has no influence on both osteoclastogenesis of mBMMs in vitro and osteoporosis of OVX model of rat in vivo. Conclusions Collectively, our study demonstrate that low-dose IL-34 regulates osteogenesis of hBMSCs partly via the PIK/AKT and ERK signaling pathway and enhances fracture healing, with neither promoting nor preventing osteoclastogenesis in vitro and osteoporosis in vivo.


2021 ◽  
Author(s):  
Jianxiang Xu ◽  
Lifeng Fu ◽  
Jinwu Bai ◽  
Huiming Zhong ◽  
Zhihui Kuang ◽  
...  

Abstract Background: Inflammatory microenvironment is significant to the differentiation and function of mesenchymal stem cells(MSCs). It evidentially influences the osteoblastogenesis of MSCs. IL-34, a newly discovered cytokine, playing a key role in metabolism. However, the research on its functional role in the osteogenesis of MSCs was rarely reported. Here, we described the regulatory effects of low-dose IL-34 on both osteoblastogenesis and osteoclastogenesis.Methods: We performed the osteogenic effects of hBMSCs by exogenous and overexpressed IL-34 in vitro, so was the osteoclastogenesis effects of mBMMs by extracellular IL-34. CCK-8 was used to assess the effect of IL-34 on the viability of hBMSCs and mBMMs. ALP staining, ARS and TRAP staining were used to evaluate ALP activity, mineral deposition and osteoclastogenesis, respectively. qRT-PCR and Western blotting analysis were performed to detect the expression of target genes and proteins. ELISA was used to evaluate the concentrations of IL-34. In vivo, a rat tibial osteotomy model and an OVX model were established. Radiographic analysis and histological evaluation were performed to confirm the therapeutic effects of IL-34 in fracture healing and osteoporosis. Statistical differences were evaluated by two-tailed Student’s t-test, one-way ANOVA with Bonferroni’s post hoc test and two-way ANOVA with Bonferroni multiple comparisons post hoc test in the comparison of 2 groups, more than 2 groups and different time points of treated groups, respectively. Results: Promoted osteoblastogenesis of hBMSCs was observed after treated by exogenous or overexpressed IL-34 in vitro, confirmed by increased mineral deposits and ALP activity. Furthermore, exogenous or overexpressed IL-34 enhanced the expression of p-AKT and p-ERK. The specific AKT and ERK signaling pathway inhibitors suppressed the enhancement of osteoblastogenesis induced by IL-34. In a rat tibial osteotomy model, imaging and histological analyses testified the local injection of exogenous IL-34 improved bone healing. However, the additional IL-34 has no influence on both osteoclastogenesis of mBMMs in vitro and osteoporosis of OVX model of rat in vivo. Conclusions: Collectively, our study demonstrate that low-dose IL-34 regulates osteogenesis of hBMSCs partly via the PIK/AKT and ERK signaling pathway and enhances fracture healing, with neither promoting nor preventing osteoclastogenesis in vitro and osteoporosis in vivo.


2019 ◽  
Vol 120 ◽  
pp. 109436 ◽  
Author(s):  
Zhizhen Sun ◽  
Hongting Jin ◽  
Huifen Zhou ◽  
Li Yu ◽  
Haitong Wan ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Liping Zhu ◽  
Min Wu ◽  
Peng Li ◽  
Yanfei Zhou ◽  
Jinyi Zhong ◽  
...  

As a noted medicinal mushroom, Ganoderma lucidum (G. lucidum) has been reported to have a number of pharmacological effects such as anti-tumor and liver protection. Compared with the common ethanol reflux method, supercritical CO2 extraction has obvious advantages in obtaining antitumor extracts from G. lucidum fruiting body such as short extraction time, low temperature and no solvent residue. However, Using high-pressure supercritical CO2 without entrainer to obtain the antitumor extracts from G. lucidum and studying their anti-hepatoma effect have not been reported. In this study, high-pressure supercritical CO2 extracts obtained under 65, 85, and 105 MPa pressure named as G65, G85, G105 respectively and ethanol reflux extract (GLE) were used to investigate their anti-hepatoma activity and the underlying molecular mechanism. The total triterpenoid content of G85 was significantly higher than that of G65 and GLE, but did not differ significantly from that of G105 by UV and high-performance liquid chromatography. GLE, G65, and G85 could inhibit cell proliferation, arrest cell cycle in G2/M phase, and induce apoptosis in two liver cancer cell lines (QGY7703 and SK-Hep1), of which G85 had the strongest effect. The results showed that the potency of their cytotoxicity of the high-pressure supercritical CO2 extracts on human hepatoma carcinoma cells in vitro was consistent with their total triterpenoid content. G85 exhibited significant anti-hepatoma effect with low toxicity In vivo. Further mechanistic investigation revealed that the anti-tumor effect of these extracts was associated with their inhibition of Ras/Raf/MEK/ERK signaling pathway. Our findings suggest that the high-pressure supercritical CO2 extraction of G. lucidum fruiting body can be used to obtain a triterpenoid-rich anti-tumor agent, which may have potential clinical significance for the treatment of human hepatoma.


2011 ◽  
Vol 39 (06) ◽  
pp. 1193-1206 ◽  
Author(s):  
De-Peng Jiang ◽  
Qi Li ◽  
Jie Yang ◽  
Juliy M. Perelman ◽  
Victor P. Kolosov ◽  
...  

The aim of this study was to investigate the influence of scutellarin on mucus production induced by human neutrophil elastase (HNE) and the possible in vitro and in vivo mechanisms. To this purpose, cells were incubated with saline, scutellarin or gefitinib for 60 min and exposed to 0.1 μM HNE for 24 h. After being pretreated respectively with saline, scutellarin or gefitinib, rats were challenged intratracheally with HNE by means of nebulization for 30 days. The expression of mucin (MUC) 5AC, protein kinase C (PKC), and extracellular signal-regulated kinase 1/2 (ERK1/2) was assessed by ELISA, RT-PCR or Western blotting. The results showed that scutellarin inhibited MUC5AC mRNA and protein expressions induced by HNE in a concentration-dependent manner in vitro. In the in vivo model, scutellarin significantly attenuated MUC5AC mRNA expression and goblet cell hyperplasia in rats treated with HNE for 30 days, as well as decreased the phosporylation of PKC and ERK1/2 compared to the HNE control group. Therefore, our study showed that scutellarin could prevent mucus hypersecretion by inhibiting the PKC-ERK signaling pathway. Inhalation scutellarin may be valuable in the treatment of chronic inflammatory lung disease.


2021 ◽  
Author(s):  
Ying Xu ◽  
Hu Tian ◽  
Chao Guang Luan ◽  
Kai Sun ◽  
peng Jin Bao ◽  
...  

Abstract Background: Hepatocellular carcinoma(HCC) in China is considered as a familiar malignant tumor with poor prognosis, high metastasis and disease relapse. Telocytes(TCs) have been verified to participate in progresses of tumorigenesis, invasions and migrations by secreting functional proteins and transmitting cell-to-cell information. Extracellular signal-regulared protein kinase(ERK) signal pathway is a vital mechanism driving cell proliferation, metastasis and apoptosis, but whether this molecular signaling mechanism contributes to matrix metalloproteinase-9(MMP) expression of TCs remains unclear. Methods: Telocytes and MMP9 expression in the liver cancer tissues are measured by immunohistochemistry assay, Westen blot assay and RT-PCR technique, meanwhile primary telocytes from liver para-cancer tissues are cultured in vitro. To demonstrate the function of telocytes for hepatocellular carcinoma, the metastatic cancer animal model is established by three typs of liver cancer cell-lines in vivo. Results: In our study, we elucidate that TCs in the para-cancer tissue can promote the metastasis of HCC cells by MMP-9 expression, in vitro and in vivo. PDGF derived from HCC cells has a capacity to activate Ras/ERK signaling pathway of TC as a result of accelerating MMP-9 expression, but it’s no significant for proliferative potential and apoptotic rate of TCs. While tyrosine kinase inhibitors and miR-942-3p suppress MMP-9 expression to make loss functions of TCs. Various mutations of TCs are also tested and single nucleotide polymorphisms of MMP-9 may be the potentially molecular mechanism of increasing protein expression in the invasive process of HCC. Conclusion: Our results demonstrate two potential mechanisms between HCC cells and TCs, suggesting that TC is a novel marker and target on deciphering reasons of cancer metastasis.


2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2094835
Author(s):  
Wenyue Zhuang ◽  
Na Zhao ◽  
Di Li ◽  
Xiaoming Su ◽  
Yueyang Wang ◽  
...  

There is no effective method for treating pulmonary fibrosis (PF) until now. This study investigated the anti-fibrotic effect of schisantherin A (SCA) extracted from Schisandra chinensis and its potential molecular mechanism in PF. A bleomycin-induced PF mouse model in vivo and transforming growth factor (TGF)-β1-induced A549 epithelial-mesenchymal transition (EMT) cell model in vitro were used for assessing the anti-fibrotic effect of SCA. Histopathological examination was conducted after hematoxylin and eosin and Masson staining. The level of TGF-β1 was tested by ELISA. The expression levels of α-smooth muscle actin, E-cadherin, and inflammatory cytokines (COX2, IL-1β, IL-6, and TNF-α) were determined by quantitative reverse transcription polymerase chain reaction and Western blot. The expression of extracellular signal-regulated kinase (ERK) was tested in lung tissues and cells by Western blot. The in vivo experiments revealed that SCA treatment markedly improved body weight and pulmonary index and reformed the destruction of the lung tissue structure. We observed that SCA inhibited the process of TGF-β1-induced EMT in the in vitro experiments. Inflammatory cytokines were reduced greatly in lung tissues and cells by SCA. Our study also indicated that SCA decreased phosphorylated ERK. It was concluded that SCA can attenuate PF by regulating the ERK signaling pathway, which suggests that SCA may be used as a potential therapeutic drug for PF.


Sign in / Sign up

Export Citation Format

Share Document