scholarly journals Bioactivity of Recombinant Humanized Monoclonal Antibody Against HER2 and Its Mechanism of Action on Ovarian Cancer

Author(s):  
Jinfeng Zeng ◽  
Rui Zhang ◽  
Rui Guan

Abstract BACKGROUND: Human epidermal growth factor receptor 2 (HER2) protein is overexpressed on the surface of various epithelial ovarian cancer tissues, which mediates the proliferation, differentiation, metastasis and signal transduction of tumor cells and is a potential cancer therapeutic target.METHODS: In this paper, the recombinant anti-HER2 humanized IgG1 monoclonal antibody (rhHer2-mAb) was expressed in HEK293F cells by constructing mammalian cell expression vector and optimizing transfection conditions. The antibody was purified by rProtein A affinity chromatography, and its mediated antibody dependent cytotoxicity (ADCC) was identified by lactate dehydrogenase(LDH) lactate dehydrogenase release assay. The anti-tumor activity of rhHer2-mAb was evaluated in NOD/SCID mice. RESULTS: The expression of rhHer2-mAb in HEK293F cells was at the highest level (100.5 mg/L) when the ratios of DNA/PEI and light chain/heavy chain was 1:4 and 1:2, respectively. The IC50 on ADCC of antibodies against SK-OV-3, OVCAR-3 and A-2780 cells were 12.36, 5.43 and 102.90ng/ml, respectively. Animal experiments in mice showed that rhHer2-mAb could effectively inhibit the growth of SK-OV-3 tumor at the dose of 10 mg/kg.CONCLUSIONS: The recombinant monoclonal antibody was obtained by transient gene expression technology and its bioactivity was studied in vitro and in vivo , providing a novel insight for the development and production of future biotechnology-based drugs using transient gene expression technology of HEK293F.

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3939
Author(s):  
Tianqi Xu ◽  
Anzhelika Vorobyeva ◽  
Alexey Schulga ◽  
Elena Konovalova ◽  
Olga Vorontsova ◽  
...  

Efficient treatment of disseminated ovarian cancer (OC) is challenging due to its heterogeneity and chemoresistance. Overexpression of human epidermal growth factor receptor 2 (HER2) and epithelial cell adhesion molecule (EpCAM) in approx. 30% and 70% of ovarian cancers, respectively, allows for co-targeted treatment. The clinical efficacy of the monoclonal antibody trastuzumab in patients with HER2-positive breast, gastric and gastroesophageal cancers makes it readily available as the HER2-targeting component. As the EpCAM-targeting component, we investigated the designed ankyrin repeat protein (DARPin) Ec1 fused to a truncated variant of Pseudomonas exotoxin A with reduced immunogenicity and low general toxicity (LoPE). Ec1-LoPE was radiolabeled, evaluated in ovarian cancer cells in vitro and its biodistribution and tumor-targeting properties were studied in vivo. The therapeutic efficacy of Ec1-LoPE alone and in combination with trastuzumab was studied in mice bearing EpCAM- and HER2-expressing SKOV3 xenografts. SPECT/CT imaging enabled visualization of EpCAM and HER2 expression in the tumors. Co-treatment using Ec1-LoPE and trastuzumab was more effective at reducing tumor growth and prolonged the median survival of mice compared with mice in the control and monotherapy groups. Repeated administration of Ec1-LoPE was well tolerated without signs of hepatic or kidney toxicity. Co-treatment with trastuzumab and Ec1-LoPE might be a potential therapeutic strategy for HER2- and EpCAM-positive OC.


2020 ◽  
Vol 21 (17) ◽  
pp. 6037
Author(s):  
Tomokazu Ohishi ◽  
Yukinari Kato ◽  
Mika K. Kaneko ◽  
Shun-ichi Ohba ◽  
Hiroyuki Inoue ◽  
...  

The now clinically-used anti-epidermal growth factor receptor (EGFR) monoclonal antibodies have demonstrated significant efficacy only in patients with metastatic colorectal cancer (mCRC), with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS). However, no effective treatments for patients with mCRC with KRAS mutated tumors have been approved yet. Therefore, a new strategy for targeting mCRC with KRAS mutated tumors is desired. In the present study, we examined the anti-tumor activities of a novel anti-EGFR monoclonal antibody, EMab-17 (mouse IgG2a, kappa), in colorectal cancer (CRC) cells with the KRAS p.G13D mutation. This antibody recognized endogenous EGRF in CRC cells with or without KRAS mutations, and showed a high sensitivity for CRC cells in flow cytometry, indicating that EMab-17 possesses a high binding affinity to the endogenous EGFR. In vitro experiments showed that EMab-17 exhibited antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity activities against CRC cells. In vivo analysis revealed that EMab-17 inhibited the metastases of HCT-15 and HCT-116 cells in the livers of nude mouse metastatic models, unlike the anti-EGFR monoclonal antibody EMab-51 of subtype mouse IgG1. In conclusion, EMab-17 may be useful in an antibody-based therapy against mCRC with the KRAS p.G13D mutation.


1989 ◽  
Vol 71 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Hoi Sang U ◽  
Patricia Y. Kelley ◽  
James D. Hatton ◽  
Jin Y. Shew

✓ Human glioblastomas are highly malignant intracranial tumors, some of which demonstrate amplification of the epidermal growth factor-receptor (EGF-R) gene. Overexpression of this gene is seen in the majority of primary tumors; however, the role of the EGF-R gene in glial tumorigenesis is unknown. The authors explored the relationship between EGF-R gene expression and glioblastoma cell growth in vitro and in vivo and found that the level of EGF-R gene expression did not correlate with tumor cell growth either in soft agar or in the nude mouse. This suggests that the EGF-R gene is not involved in effecting direct growth stimulation in glial oncogenesis. Tumorigenesis involves differentiation arrest; therefore, the expression of several proto-oncogenes in neuroectodermal tumors was investigated to evaluate the potential involvement of the EGF-R gene in glial differentiation. A nonoverlapping expression of the N-myc and EGF-R genes was found in neuronal-derived and glial-derived tumors, respectively. This suggests that the EGF-R gene may be involved in differentiation or its arrest in glia.


1990 ◽  
Vol 126 (1) ◽  
pp. 89-98 ◽  
Author(s):  
T. J. McCann ◽  
A. P. F. Flint

ABSTRACT Release of oxytocin by sliced or minced sheep luteal tissue in vitro was stimulated up to 1·6- and 2·3-fold by arachidonic acid and the calcium ionophore A23187 respectively. Prostaglandin (PG) F2α and the PGF2α analogue cloprostenol, and other potential agonists known to be active in vivo, including noradrenaline and acetylcholine, were ineffective, as was the phorbol ester tetradecanoylphorbol acetate (TPA). The ineffectiveness of PGF2α was not due to a general unresponsiveness of the tissue in vitro, as PGF2α reduced LH stimulation of tissue concentrations of cyclic AMP and activated inositol lipid hydrolysis. The effect of arachidonic acid was accompanied by release from the tissue of the cytosolic enzyme lactate dehydrogenase (at arachidonic acid concentrations below those required to release oxytocin) and its effect on oxytocin and lactate dehydrogenase release was mimicked by oleic and linolenic acids; arachidonic acid was concluded to act by a non-physiological physicochemical effect without conversion to an eicosanoid. As PGF2α in vitro is known to raise intracellular Ca2+ concentrations in the large luteal cells that secrete oxytocin, and as A23187 stimulates oxytocin release in vitro in the presence and absence of TPA, it is concluded that in-vitro incubation results in an artifactual blockade of the oxytocin-releasing action of PGF2α at an unidentified point distal to the effect on intracellular Ca2+. Journal of Endocrinology (1990) 126, 89–98


Oncogenesis ◽  
2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Shuting Huang ◽  
Suiying Liang ◽  
Guandi Chen ◽  
Jing Chen ◽  
Keli You ◽  
...  

AbstractIt has been reported that chemotherapy resistance mainly contributed to treatment failure and poor survival in patients with ovarian cancer. Therefore, clarifying the molecular mechanism and identifying effective strategies to overcome drug resistance may play an important clinical impact on this malignant tumor. In our study, we found that the expression of Glycosyltransferase 8 domain containing 2 (GLT8D2) was significantly upregulated in ovarian cancer samples with CDDP (Cis-dichlorodiammine-platinum) resistance. Biological experiment demonstrate that GLT8D2 overexpression confers CDDP resistance on ovarian cancer cells; however, inhibition of GLT8D2 sensitized ovarian cancer cell lines to CDDP cytotoxicity both in vitro and in vivo. By using affinity purification/mass spectrometry (IP/MS) and reciprocal co-immunoprecipitation (co-IP) analyses, we found that GLT8D2 interacts with fibroblast growth factor receptor 1(FGFR1) in ovarian cancer cells. Furthermore, overexpression of GLT8D2 activated FGFR/PI3K signaling axis and upregulated the phosphorylation levels of FRS2a and AKT (AKT serine/threonine kinase). Importantly, pharmacological inhibition of FGFR and PI3K (phosphatidylinositol 3-kinase) signaling pathway significantly counteracted GLT8D2-induced chemoresistance and enhanced platinum’s therapeutic efficacy in ovarian cancer. Therefore, our findings suggest that GLT8D2 is a potential therapeutic target for the treatment of ovarian cancer; targeting GLT8D2/FGFR/PI3K/AKT signaling axis may represent a promising strategy to enhance platinum response in patients with chemoresistant ovarian cancer.


2019 ◽  
Author(s):  
Zhiqing Huang ◽  
Eiji Kondoh ◽  
Zachary Visco ◽  
Tsukasa Baba ◽  
Noriomi Matsumura ◽  
...  

ABSTRACTObjectiveOvarian cancer cells often exist in vivo as multicellular spheroids. Spheroid formation in vitro has been used to enrich for cancer stem cell populations from primary tumors. Such spheroids exhibit drug resistance and slow proliferation, suggesting involvement in disease recurrence. Our objectives were to characterize cancer spheroid phenotypes, determine gene expression profiles associated with spheroid forming capacity and to evaluate the responsiveness of spheroids to commonly used and novel therapeutic agents.MethodsTumorigenic potential was assessed using anchorage independent growth assays in 24 cell lines. Spheroids from cell lines (N=12) and from primary cancers (N=8) were grown on non-adherent tissue culture plates in serum-free media. Cell proliferation was measured using MTT assays and Ki67 immunostaining. Affymetrix HT U133A gene expression data was used to identify differentially expressed genes based on spheroid forming capacity. Matched monolayers and spheroids (N=7 pairs) were tested for response to cisplatin, paclitaxel and 7-hydroxystaurosporine (UCN-01) while mitochondrial inhibition was performed using oligomycin. Xenograft tumors from intraperitoneal injection of CAOV2-GFP/LUC ovarian cancer cells into nude mice were treated with carboplatin to reduce tumor burden followed by secondary treatment with carboplatin, UCN-01, or Oltipraz. Tumor formation and response was monitored using live imaging.ResultsOf 12 cell lines with increased anchorage-independent growth, 8 also formed spheroids under serum-free spheroid culture conditions. Spheroids showed reduced proliferation (p<0.0001) and Ki67 immunostaining (8% versus 87%) relative to monolayer cells. Spheroid forming capacity was associated with increased mitochondrial pathway activity (p ≤ 0.001). The mitochondrial inhibitors, UCN-01 and Oligomycin, demonstrated effectiveness against spheroids, while spheroids were refractory to cisplatin and paclitaxel. By live in vivo imaging, ovarian cancer xenograft tumors were reduced after primary treatment with carboplatin. Continued treatment with carboplatin was accompanied by an increase in tumor signal while there was little or no increase in tumor signal observed with subsequent treatment with UCN-01 or Oltipraz.ConclusionsOur findings suggest that the mitochondrial pathway in spheroids may be an important therapeutic target in preventing disease recurrence.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 4
Author(s):  
Eunice Lee ◽  
Noor A. Lokman ◽  
Martin K. Oehler ◽  
Carmela Ricciardelli ◽  
Frank Grutzner

Ovarian cancer (OC) is one of the most lethal gynecological malignancies, yet molecular mechanisms underlying its origin and progression remain poorly understood. With increasing reports of piRNA pathway deregulation in various cancers, we aimed to better understand its role in OC through a comprehensive analysis of key genes: PIWIL1-4, DDX4, HENMT1, MAEL, PLD6, TDRD1,9 and mutants of PIWIL1 (P1∆17) and PIWIL2 (PL2L60). High-throughput qRT-PCR (n = 45) and CSIOVDB (n = 3431) showed differential gene expression when comparing benign ovarian tumors, low grade OC and high grade serous OC (HGSOC). Significant correlation of disparate piRNA pathway gene expression levels with better progression free, post-progression free and overall survival suggests a complex role of this pathway in OC. We discovered PIWIL3 expression in chemosensitive but not chemoresistant primary HGSOC cells, providing a potential target against chemoresistant disease. As a first, we revealed that follicle stimulating hormone increased PIWIL2 expression in OV-90 cells. PIWIL1, P1∆17, PIWIL2, PL2L60 and MAEL overexpression in vitro and in vivo decreased motility and invasion of OVCAR-3 and OV-90 cells. Interestingly, P1∆17 and PL2L60, induced increased motility and invasion compared to PIWIL1 and PIWIL2. Our results in HGSOC highlight the intricate role piRNA pathway genes play in the development of malignant neoplasms.


Sign in / Sign up

Export Citation Format

Share Document