scholarly journals Cobs Porous Carbon-Based Materials With High Energy And Excellent Cycle Stability For Supercapacitor Applications

Author(s):  
Moses Kigozi ◽  
Richard K Koech ◽  
Kingsley Orisekeh ◽  
Ravi Kali ◽  
Omar L M Kamoga ◽  
...  

Abstract Background and purpose: For application in supercapacitors, improving the efficiency of the electrode materials is the most important for obtaining high performance. Porous carbon with suitable architectures is reliable for improved electrochemical capacitors. In this study, we optimized the maize cobs as a potential abundant precursor for the production of porous carbon supercapacitor applications. This research study aimed to advance on the activation method for Activation of the biomass and to up-cycling agricultural biomass into carbon-based porous materials for supercapacitor electrode application. The carbonized samples were kept in a desiccator for 3 hours to allow intercalation and interaction of the carbon lattice expansion by K+ ion before Activation [Topic, RQ]. Results: The physical and chemical characterization of the synthesized materials was carried out several techniques for determining different properties of the activated carbon from maize cobs, including; structural-functional groups, morphology, chemical composition, physical properties and electrochemical performance. The results revealed surface structure with oxygen-based functional groups carried by XPS and FTIR, the amorphous nature by XRD, high-temperature stability to degradation by TGA/DSC, among others. Also, the structural characterization revealed a BET specific surface area of 1443.94 m2/g with a pore volume of 0.7915cm3/g. Symmetric devices based on the produced materials delivered a specific capacitance of 358.7F/g with an energy density of 12.45 Wh/kg and a corresponding power density of 250 W/kg at 0.5A/g [Outcome]. Conclusions: The as-prepared electrodes exhibited excellent stability with the capacitance retention of 99% at the maximum potential for a repeated 10hr to a total of 130 h. The industries can commercialise these activated carbon materials for application in energy storage systems and water purification due to their porosity and high-temperature resistance to degradation [Contributions].

Author(s):  
Kaixiang Zou ◽  
Yuanfu Deng ◽  
Weijing Wu ◽  
Shiwei Zhang ◽  
Guohua Chen

High performance carbon-based materials are ideal electrode materials for Li-ion capacitors (LICs), but there are still many challenges such as the complicated preparation preocesses, high cost and low yield. Also,...


2020 ◽  
Vol 1000 ◽  
pp. 50-57
Author(s):  
Jagad Paduraksa ◽  
Muhammad Luthfi ◽  
Ariono Verdianto ◽  
Achmad Subhan ◽  
Wahyu Bambang Widayatno ◽  
...  

Lithium-Ion Capacitor (LIC) has shown promising performance to meet the needs of high energy and power-density-energy storage system in the era of electric vehicles nowadays. The development of electrode materials and electrolytes in recent years has improvised LIC performance significantly. One of the active materials of LIC electrodes, activated carbon (AC), can be synthesized from various biomass, one of which is the water hyacinth. Its abundant availability and low utilization make the water hyacinth as a promising activated carbon source. To observe the most optimal physical properties of AC, this study also compares various activation temperatures. In this study, full cell LIC was fabricated using LTO based anode, and water hyacinth derived AC as the cathode. The LIC full cell was further characterized to see the material properties and electrochemical performance. Water hyacinth derived LIC can achieve a specific capacitance of 32.11 F/g, the specific energy of 17.83 Wh/kg, and a specific power of 160.53 W/kg.


2013 ◽  
Vol 634-638 ◽  
pp. 1026-1030 ◽  
Author(s):  
Huan Chun Wang ◽  
Xiao Li Gou ◽  
Xiao Meng Lv

Two kinds of modified activated carbons were prepared by dipping with Zn(NO3)2 solution and by reducing in the atmosphere of N2 at high temperature respectively, which were characterized by FTIR,DSC,SEM and EDS. The surface structure was strongly changed in the process, along with the changes of chemical functional groups. The results of adsorption experiments revealed that the adsorbent capacities of UDMH gas at room temperature were enhanced obviously by modification compared with the raw activated carbon, especially dipped by transition metal solution. The mechanism probably involved was also discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1814
Author(s):  
Guozhi Hou ◽  
Qingyuan Wang ◽  
Yu Zhu ◽  
Zhangbo Lu ◽  
Jun Xu ◽  
...  

Thermal emitters with properties of wavelength-selective and narrowband have been highly sought after for a variety of potential applications due to their high energy efficiency in the mid-infrared spectral range. In this study, we theoretically and experimentally demonstrate the tunable narrowband thermal emitter based on fully planar Si-W-SiN/SiNO multilayer, which is realized by the excitation of Tamm plasmon polaritons between a W layer and a SiN/SiNO-distributed Bragg reflector. In conjunction with electromagnetic simulations by the FDTD method, the optimum structure design of the emitter is implemented by 2.5 periods of DBR structure, and the corresponding emitter exhibits the nearly perfect narrowband absorption performance at the resonance wavelength and suppressed absorption performance in long wave range. Additionally, the narrowband absorption peak is insensitive to polarization mode and has a considerable angular tolerance of incident light. Furthermore, the actual high-quality Si-W-SiN/SiNO emitters are fabricated through lithography-free methods including magnetron sputtering and PECVD technology. The experimental absorption spectra of optimized emitters are found to be in good agreement with the simulated absorption spectra, showing the tunable narrowband absorption with all peak values of over 95%. Remarkably, the fabricated Si-W-SiN/SiNO emitter presents excellent high-temperature stability for several heating/cooling cycles confirmed up to 1200 K in Ar ambient. This easy-to-fabricate and tunable narrowband refractory emitter paves the way for practical designs in various photonic and thermal applications, such as thermophotovoltaic and IR radiative heaters.


2006 ◽  
Vol 153 (2) ◽  
pp. 419-423 ◽  
Author(s):  
K. Leitner ◽  
A. Lerf ◽  
M. Winter ◽  
J.O. Besenhard ◽  
S. Villar-Rodil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document