scholarly journals AgNPs Improved Feather Keratin Based Bio-Membrane

Author(s):  
Jiao Ding ◽  
Ruihao Lai ◽  
Wenjie Chen ◽  
Guodian Zhu ◽  
Ming He ◽  
...  

Abstract AgNPs (Silver Nanoparticles) is successfully prepared and then loaded into feather keratin (FK) based bio-membrane by electrospinning. The morphology, thermal stability, mechanical properties and bacteriostatic activity of the as-prepared AgNPs/FK/PVA bio-membrane are completely developed in this study. Microstructure show that the AgNPs has been dispersed in FK-based bio-membrane without agglomeration. The results suggest that the addition of AgNPs enhanced effectively the performances of FK-based bio-membrane, and the appropriate amount of AgNPs is 1%-2%. The combination of AgNPs and FK can not only ensure the uniform dispersion and antibacterial stability of AgNPs, but also give play to the biocompatibility effect of FK, which makes it natural, safe, stable and degradable, and broaden its application in the field of biomedicine.

2017 ◽  
Vol 15 (1_suppl) ◽  
pp. 13-18 ◽  
Author(s):  
Shiuh-Chuan Her ◽  
Kuan-Yu Lin

Background To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)–reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Methods Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Results Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Conclusions Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 305 ◽  
Author(s):  
Ming He ◽  
Man Chen ◽  
Yao Dou ◽  
Jiao Ding ◽  
Hangbo Yue ◽  
...  

Feathers, which contain >90% keratin, are valuable natural protein resources. The aim of this study is to prepare antimicrobial feather keratin (FK)-based nanofibers by incorporating silver nanoparticles (AgNPs). A series of AgNPs-embedded feather keratin/poly(vinyl alcohol)/poly(ethylene oxide) (FK/PVA/PEO) composite nanofibers with varying amounts of AgNPs content were fabricated by electrospinning. Their morphology, crystallinity, thermal stability, tensile property, and antibacterial activity were systematically investigated. The average diameters of composite nanofibers gradually decreased with increases in the amount of AgNPs. The crystallinity, thermal stability, and antibacterial activity of FK/PVA/PEO nanofibers were enhanced by embedding AgNPs. When embedded with 1.2% AgNPs, both the tensile strength and elongation-at-break reached the highest level. This work has the potential to expand the application of FK-based nanofibers in the biomaterial field.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 178 ◽  
Author(s):  
Joo Hyung Lee ◽  
Sang Ho Park ◽  
Seong Hun Kim

Effective surface alkylation of cellulose nanocrystals (CNCs) was developed using a nucleophilic substitution reaction with an alkyl bromide to convert hydrophilic groups on the CNCs into alkyl groups and the degree of substitution was quantitatively determined. The resultant alkylated CNCs exhibited improved dispersion in a nonpolar environment and increased hydrophobicity, compared with unmodified and acetylated CNCs. Polylactide (PLA) nanocomposites reinforced with unmodified and modified CNCs were prepared by a solution casting method and the effects of reinforcement on the thermal stability, mechanical properties, morphology, and barrier properties were investigated. In addition, modeling of the mechanical properties was evaluated to simulate the modulus of the PLA nanocomposites and results were compared with the experimental values. PLA nanocomposites reinforced with alkylated CNCs exhibited superior properties in terms of thermal stability, tensile strength, Young’s modulus, and barrier properties because of the uniform dispersion and strong interfacial adhesion between filler and matrix. This high performance and fully return-to-nature nanocomposite is expected to expand the utilization of CNCs from sustainable bioresources and the practical application of biodegradable plastics.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Qingzhong Mao ◽  
Yusheng Zhang ◽  
Yazhou Guo ◽  
Yonghao Zhao

AbstractThe rapid development of high-speed rail requires copper contact wire that simultaneously possesses excellent electrical conductivity, thermal stability and mechanical properties. Unfortunately, these are generally mutually exclusive properties. Here, we demonstrate directional optimization of microstructure and overcome the strength-conductivity tradeoff in copper wire. We use rotary swaging to prepare copper wire with a fiber texture and long ultrafine grains aligned along the wire axis. The wire exhibits a high electrical conductivity of 97% of the international annealed copper standard (IACS), a yield strength of over 450 MPa, high impact and wear resistances, and thermal stability of up to 573 K for 1 h. Subsequent annealing enhances the conductivity to 103 % of IACS while maintaining a yield strength above 380 MPa. The long grains provide a channel for free electrons, while the low-angle grain boundaries between ultrafine grains block dislocation slip and crack propagation, and lower the ability for boundary migration.


2021 ◽  
Author(s):  
Johannes Essmeister ◽  
M. Josef Taublaender ◽  
Thomas Koch ◽  
D. Alonso Cerrón-Infantes ◽  
Miriam M. Unterlass ◽  
...  

A novel class of fully organic composite materials with well-balanced mechanical properties and improved thermal stability was developed by incorporating highly crystalline, hydrothermally synthesized polyimide microparticles into an epoxy matrix.


2021 ◽  
Vol 198 ◽  
pp. 109373
Author(s):  
Maocheng Ji ◽  
Fangyi Li ◽  
Jianyong Li ◽  
Jianfeng Li ◽  
Chuanwei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document