ultrafine grains
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2043
Author(s):  
Hailong Jia ◽  
Yinan Piao ◽  
Kaining Zhu ◽  
Chaoran Yin ◽  
Wenqiang Zhou ◽  
...  

It is well known that ultrafine grained and nanocrystalline materials show enhanced strength, while they are susceptible to thermally induced grain coarsening. The present work aims to enhance the thermal stability of ultrafine Al grains produced by equal channel angular pressing (ECAP) via dynamically precipitation. Detailed characterization by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) has been carried out to reveal the microstructural evolution during both ECAP and post-ECAP annealing. After five passes of ECAP, both Al-8Zn and Al-6Bi-8Zn alloys show an ultrafine grain structure together with dynamic precipitated nanoscale Zn particles along grain boundaries. Upon annealing at 200 °C, ultrafine grains in the Al-8Zn and Al-6Bi-8Zn alloys show a remarkable thermal stability compared to the Al-8Bi alloy, which is mainly due to the presence of nanoscale Zn precipitates along grain boundaries. The present work reveals that nanoscale Zn particles have a positive effect on preserving the ultrafine grains during annealing, which is useful for the design of UFG Al alloys with improved thermal stability.


2021 ◽  
pp. 749-772
Author(s):  
Wei Wang ◽  
Muxin Yang ◽  
Dingshun Yan ◽  
Ping Jiang ◽  
Fuping Yuan ◽  
...  

Carbon ◽  
2021 ◽  
Vol 177 ◽  
pp. 35-43
Author(s):  
Qicheng Hu ◽  
Ki-Bong Nam ◽  
Jin-Ho Yeo ◽  
Mun-Ja Kim ◽  
Ji-Beom Yoo

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Qingzhong Mao ◽  
Yusheng Zhang ◽  
Yazhou Guo ◽  
Yonghao Zhao

AbstractThe rapid development of high-speed rail requires copper contact wire that simultaneously possesses excellent electrical conductivity, thermal stability and mechanical properties. Unfortunately, these are generally mutually exclusive properties. Here, we demonstrate directional optimization of microstructure and overcome the strength-conductivity tradeoff in copper wire. We use rotary swaging to prepare copper wire with a fiber texture and long ultrafine grains aligned along the wire axis. The wire exhibits a high electrical conductivity of 97% of the international annealed copper standard (IACS), a yield strength of over 450 MPa, high impact and wear resistances, and thermal stability of up to 573 K for 1 h. Subsequent annealing enhances the conductivity to 103 % of IACS while maintaining a yield strength above 380 MPa. The long grains provide a channel for free electrons, while the low-angle grain boundaries between ultrafine grains block dislocation slip and crack propagation, and lower the ability for boundary migration.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 572
Author(s):  
Hamed Aghajani Derazkola ◽  
Eduardo García Gil ◽  
Alberto Murillo-Marrodán ◽  
Damien Méresse

The evolution of the microstructure changes during hot deformation of high-chromium content of stainless steels (martensitic stainless steels) is reviewed. The microstructural changes taking place under high-temperature conditions and the associated mechanical behaviors are presented. During the continuous dynamic recrystallization (cDRX), the new grains nucleate and growth in materials with high stacking fault energies (SFE). On the other hand, new ultrafine grains could be produced in stainless steel material irrespective of the SFE employing high deformation and temperatures. The gradual transformation results from the dislocation of sub-boundaries created at low strains into ultrafine grains with high angle boundaries at large strains. There is limited information about flow stress and monitoring microstructure changes during the hot forming of martensitic stainless steels. For this reason, continuous dynamic recrystallization (cDRX) is still not entirely understood for these types of metals. Recent studies of the deformation behavior of martensitic stainless steels under thermomechanical conditions investigated the relationship between the microstructural changes and mechanical properties. In this review, grain formation under thermomechanical conditions and dynamic recrystallization behavior of this type of steel during the deformation phase is discussed.


2021 ◽  
Vol 193 ◽  
pp. 49-54
Author(s):  
Jiwei Geng ◽  
Yugang Li ◽  
Hongyu Xiao ◽  
Zhiping Wang ◽  
Mingliang Wang ◽  
...  

2021 ◽  
pp. 138135
Author(s):  
Naiguang Wang ◽  
Yixiang Huang ◽  
Jingjing Liu ◽  
Xusheng Yang ◽  
Weipeng Xie ◽  
...  

2020 ◽  
Vol 10 (22) ◽  
pp. 8109
Author(s):  
Ke Feng ◽  
Ming Yang ◽  
Shao-lei Long ◽  
Bo Li

An effective approach composed of solution treatment, multipass cold rolling and aging was developed to improve the strength and ductility of novel Al-Cu-Mn alloys. This approach increased the yield strength by 214 MPa over that of the conventional peak-aged samples while maintaining a good elongation of 8.7%. The microstructure evolution was examined by confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). During postaging, deformed structures underwent a considerable decrease in dislocation density and typical dislocation network structures were formed. At the same time, highly dispersed nanoprecipitates and extensive ultrafine grains and nanograins were generated. These nanoprecipitations enabled effective dislocation pinning and accumulation during tension deformation. Therefore, composite nanostructures containing ultrafine grains, nanograins, dislocation network structures and nanoprecipitates were responsible for the simultaneous increases in strength and ductility. This paper provides a new understanding of designing composite nanostructure materials for achieving high strength and good ductility that is expected to be used for other age-hardenable alloys and steels.


Sign in / Sign up

Export Citation Format

Share Document