scholarly journals Genomic Features and Comparative Genomic Analysis of novel Bacillus glycinifermentans strain JRCGR-1

Author(s):  
Asad Karim ◽  
poirot olivier ◽  
Ambrina Khatoon ◽  
Matthieu Legendre

Abstract To the best of our knowledge, only six B. glycinifermentans sp. genome sequences are available in the public database. Here, we performed genome sequencing and comparative genomics analysis of B. glycinifermentans strain JRCGR-1. Cluster analysis of strain JRCGR-1 genes showed that 92.6% of genes were present in the orthogroups and 7.4% genes were not assigned to any group. The pangenome size was calculated at 8329 genes and presented an open genome characteristic. Phylogeny based on the pan and core genome demonstrated that all the B. glycinifermentans strains belong to the same clade. The strain JRCGR-1, ANI, TETRA and DDH values were in the range of 96.1-99.04%, 0.996-997, 73.5–84.7%, respectively. The strain JRCGR genome exhibits a high level of synteny with multiple locations in B. sonorensis sp. and B. licheniformis sp. The finding of the current study provides knowledge that facilitates a better understanding of this at the genomic level.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xueya Zhang ◽  
Qiaoling Li ◽  
Hailong Lin ◽  
Wangxiao Zhou ◽  
Changrui Qian ◽  
...  

Aminoglycosides are important options for treating life-threatening infections. However, high levels of aminoglycoside resistance (HLAR) among Klebsiella pneumoniae isolates have been observed to be increasing frequently. In this study, a total of 292 isolates of the K. pneumoniae complex from a teaching hospital in China were analyzed. Among these isolates, the percentage of HLAR strains was 13.7% (40/292), and 15 aminoglycoside resistance genes were identified among the HLAR strains, with rmtB being the most dominant resistance gene (70%, 28/40). We also described an armA-carrying Klebsiella variicola strain KP2757 that exhibited a high-level resistance to all aminoglycosides tested. Whole-genome sequencing of KP2757 demonstrated that the strain contained one chromosome and three plasmids, with all the aminoglycoside resistance genes (including two copies of armA and six AME genes) being located on a conjugative plasmid, p2757-346, belonging to type IncHI5. Comparative genomic analysis of eight IncHI5 plasmids showed that six of them carried two copies of the intact armA gene in the complete or truncated Tn1548 transposon. To the best of our knowledge, for the first time, we observed that two copies of armA together with six AME genes coexisted on the same plasmid in a strain of K. variicola with HLAR. Comparative genomic analysis of eight armA-carrying IncHI5 plasmids isolated from humans and sediment was performed, suggesting the potential for dissemination of these plasmids among bacteria from different sources. These results demonstrated the necessity of monitoring the prevalence of IncHI5 plasmids to restrict their worldwide dissemination.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Débora Trichez ◽  
Andrei S Steindorff ◽  
Carlos E V F Soares ◽  
Eduardo F Formighieri ◽  
João R M Almeida

ABSTRACT Xylitol is a five-carbon polyol of economic interest that can be produced by microbial xylose reduction from renewable resources. The current study sought to investigate the potential of two yeast strains, isolated from Brazilian Cerrado biome, in the production of xylitol as well as the genomic characteristics that may impact this process. Xylose conversion capacity by the new isolates Spathaspora sp. JA1 and Meyerozyma caribbica JA9 was evaluated and compared with control strains on xylose and sugarcane biomass hydrolysate. Among the evaluated strains, Spathaspora sp. JA1 was the strongest xylitol producer, reaching product yield and productivity as high as 0.74 g/g and 0.20 g/(L.h) on xylose, and 0.58 g/g and 0.44 g/(L.h) on non-detoxified hydrolysate. Genome sequences of Spathaspora sp. JA1 and M. caribbica JA9 were obtained and annotated. Comparative genomic analysis revealed that the predicted xylose metabolic pathway is conserved among the xylitol-producing yeasts Spathaspora sp. JA1, M. caribbica JA9 and Meyerozyma guilliermondii, but not in Spathaspora passalidarum, an efficient ethanol-producing yeast. Xylitol-producing yeasts showed strictly NADPH-dependent xylose reductase and NAD+-dependent xylitol-dehydrogenase activities. This imbalance of cofactors favors the high xylitol yield shown by Spathaspora sp. JA1, which is similar to the most efficient xylitol producers described so far.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9171 ◽  
Author(s):  
Danial Nasr Azadani ◽  
Daiyuan Zhang ◽  
J. Robert Hatherill ◽  
David Silva ◽  
Jeffrey W. Turner

Enterococcus is a genus of Gram-positive bacteria that are commensal to the gastrointestinal tracts of humans but some species have been increasingly implicated as agents of nosocomial infections. The increase in infections and the spread of antibiotic-resistant strains have contributed to renewed interest in the discovery of Enterococcus phages. The aims of this study were (1) the isolation, characterization, and genome sequencing of a phage capable of infecting an antibiotic-resistant E. faecalis strain, and (2) the comparative genomic analysis of publicly-available Enterococcus phages. For this purpose, multiple phages were isolated from wastewater treatment plant (WWTP) influent using a high-level aminoglycoside-resistant (HLAR) E. faecalis strain as the host. One phage, phiNASRA1, demonstrated a high lytic efficiency (∼97.52%). Transmission electron microscopy (TEM) and whole-genome sequencing (WGS) showed that phiNASRA1 belongs to the Siphoviridae family of double-stranded DNA viruses. The phage was approximately 250 nm in length and its complete genome (40,139 bp, 34.7% GC) contained 62 open reading frames (ORFs). Phylogenetic comparisons of phiNASRA1 and 31 publicly-available Enterococcus phages, based on the large subunit terminase and portal proteins, grouped phage by provenance, size, and GC content. In particular, both phylogenies grouped phages larger than 100 kbp into distinct clades. A phylogeny based on a pangenome analysis of the same 32 phages also grouped phages by provenance, size, and GC content although agreement between the two single-locus phylogenies was higher. Per the pangenome phylogeny, phiNASRA1 was most closely related to phage LY0322 that was similar in size, GC content, and number of ORFs (40,139 and 40,934 bp, 34.77 and 34.80%, and 60 and 64 ORFs, respectively). The pangenome analysis did illustrate the high degree of sequence diversity and genome plasticity as no coding sequence was homologous across all 32 phages, and even ‘conserved’ structural proteins (e.g., the large subunit terminase and portal proteins) were homologous in no more than half of the 32 phage genomes. These findings contribute to a growing body of literature devoted to understanding phage biology and diversity. We propose that this high degree of diversity limited the value of the single-locus and pangenome phylogenies. By contrast, the high degree of homology between phages larger than 100 kbp suggests that pangenome analyses of more similar phages is a viable method for assessing subclade diversity. Future work is focused on validating phiNASRA1 as a potential therapeutic agent to eradicate antibiotic-resistant E. faecalis infections in an animal model.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Eiji Miyauchi ◽  
Hidehiro Toh ◽  
Akiyo Nakano ◽  
Soichi Tanabe ◽  
Hidetoshi Morita

Lactococcus garvieaeis a major pathogen for fish. Two complete (ATCC 49156 and Lg2) and three draft (UNIUD074, 8831, and 21881) genome sequences ofL. garvieaehave recently been released. We here present the results of a comparative genomic analysis of these fish and human isolates ofL. garvieae. The pangenome comprised 1,542 core and 1,378 dispensable genes. The sequencedL. garvieaestrains shared most of the possible virulence genes, but the capsule gene cluster was found only in fish-pathogenic strain Lg2. The absence of the capsule gene cluster in other nonpathogenic strains isolated from mastitis and vegetable was also confirmed by PCR. The fish and human isolates ofL. garvieaecontained the specific two and four adhesin genes, respectively, indicating that these adhesion proteins may be involved in the host specificity differences ofL. garvieae. The discoveries revealed by the pangenomic analysis may provide significant insights into the biology ofL. garvieae.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Jianchao Ying ◽  
Jun Ye ◽  
Teng Xu ◽  
Qian Wang ◽  
Qiyu Bao ◽  
...  

Rhodococcus equi, a member of the Rhodococcus genus, is a gram-positive pathogenic bacterium. Rhodococcus possesses an open pan-genome that constitutes the basis of its high genomic diversity and allows for adaptation to specific niche conditions and the changing host environments. Our analysis further showed that the core genome of R. equi contributes to the pathogenicity and niche adaptation of R. equi. Comparative genomic analysis revealed that the genomes of R. equi shared identical collinearity relationship, and heterogeneity was mainly acquired by means of genomic islands and prophages. Moreover, genomic islands in R. equi were always involved in virulence, resistance, or niche adaptation and possibly working with prophages to cause the majority of genome expansion. These findings provide an insight into the genomic diversity, evolution, and structural variation of R. equi and a valuable resource for functional genomic studies.


2015 ◽  
Vol 83 (12) ◽  
pp. 4896-4896
Author(s):  
Benard W. Kulohoma ◽  
Jennifer E. Cornick ◽  
Chrispin Chaguza ◽  
Feyruz Yalcin ◽  
Simon R. Harris ◽  
...  

Author(s):  
Yaqian Xiao ◽  
Ruhan Jiang ◽  
Xiaoxiong Wu ◽  
Qi Zhong ◽  
Yi Li ◽  
...  

This study provided the latest comparative genomic analysis on Stenotrophomonas maltophilia strains and focused on analyzing their genomic features that allow them to adapt to natural environments. In this study, we set S. maltophilia W18 as a typical PAH-degrading strain of this species. By discussing the genomic adaptative features of degrading PAH, we can predict genomic adaptative features of other S. maltophilia PAH-degrading strains since the core function of this species is stable.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 661 ◽  
Author(s):  
Nadezhda Chernysheva ◽  
Evgeniya Bystritskaya ◽  
Anna Stenkova ◽  
Ilya Golovkin ◽  
Olga Nedashkovskaya ◽  
...  

We obtained two novel draft genomes of type Zobellia strains with estimated genome sizes of 5.14 Mb for Z. amurskyensis KMM 3526Т and 5.16 Mb for Z. laminariae KMM 3676Т. Comparative genomic analysis has been carried out between obtained and known genomes of Zobellia representatives. The pan-genome of Zobellia genus is composed of 4853 orthologous clusters and the core genome was estimated at 2963 clusters. The genus CAZome was represented by 775 GHs classified into 62 families, 297 GTs of 16 families, 100 PLs of 13 families, 112 CEs of 13 families, 186 CBMs of 18 families and 42 AAs of six families. A closer inspection of the carbohydrate-active enzyme (CAZyme) genomic repertoires revealed members of new putative subfamilies of GH16 and GH117, which can be biotechnologically promising for production of oligosaccharides and rare monomers with different bioactivities. We analyzed AA3s, among them putative FAD-dependent glycoside oxidoreductases (FAD-GOs) being of particular interest as promising biocatalysts for glycoside deglycosylation in food and pharmaceutical industries.


Sign in / Sign up

Export Citation Format

Share Document