scholarly journals Foliar Application of Flavonoids (rutin) Regulates Phytoremediation Efficiency of Amaranthus Hypochondriacus by Altering the Permeability of Cell Membranes and Immobilizing Excess Cd in the Cell Wall

Author(s):  
Yuchen Kang ◽  
Jiaxin Liu ◽  
Li Yang ◽  
Na Li ◽  
Yuhao Wang ◽  
...  

Abstract The gap between the current serious soil heavy metal (HM) contamination situation and the low efficiency of soil remediation has become one of the factors limiting economic development and human health. The aim of this study was to propose a method to improve the efficiency of phytoremediation by exogenous rutin application and to explain the potential mechanism. A series of rutin treatments were designed to evaluate the biomass, cadmium (Cd) accumulation and phytoremediation efficiency responses of Amaranthus hypochondriacus to different levels of rutin (0.5, 1.5, and 5 ppm) under different Cd stress levels (10, 25, 50, and 100 ppm). The determination of cell membrane damage indicators, the subcellular distribution of Cd and the establishment of a predictive model for Cd accumulation were also carried out. The results showed a decline in cell membrane damage with rutin application, and more Cd ions were immobilized in the cell wall than in the vacuole, resulting in an increase in Cd tolerance in plants. The addition of rutin caused significant effects on the synthesis of glutathione (GSH), including the advancement of the conversion of GSH to phytochelatins (PCs). Among them, PC2 and PC3 in the leaves contributed the most to the high accumulation of Cd in Amaranthus hypochondriacus according to the prediction model. Overall, the phytoremediation efficiency and phytoextraction amount of Amaranthus hypochondriacus with foliar rutin application were improved significantly by 260% and 319%, respectively. These findings can contribute to the further development of soil remediation in Cd-contaminated fields.

2020 ◽  
Vol 8 (12) ◽  
pp. 1991
Author(s):  
Alina Grigor’eva ◽  
Alevtina Bardasheva ◽  
Anastasiya Tupitsyna ◽  
Nariman Amirkhanov ◽  
Nina Tikunova ◽  
...  

Antimicrobial peptides, including synthetic ones, are becoming increasingly important as a promising tool to fight multidrug-resistant bacteria. We examined the effect of cationic peptides H2N-Arg9-Phe2-C(O)NH2 and H2N-(Lys-Phe-Phe)3-Lys-C(O)NH2 on Staphylococcus aureus, which remains one of the most harmful pathogens. Antiseptic chlorhexidine served as reference preparation. We studied viability of S. aureus and examined its ultrastructure under treatment with 100 µM of R9F2 or (KFF)3K peptides or chlorhexidine using transmission electron microscopy of ultrathin sections. Bacterial cells were sampled as kinetic series starting from 1 min up to 4 h of treatment with preparations. Both peptides caused clearly visible damage of bacteria cell membrane within 1 min. Incubation of S. aureus with R9F2 or (KFF)3K peptides led to cell wall thinning, loss of cytoplasm structure, formation of mesosome-derived multimembrane structures and “decorated fibers” derived from DNA chains. The effect of R9F2 peptides on S. aureus was more severe than the effect of (KFF)3K peptides. Chlorhexidine heavily damaged the bacteria cell wall, in particular in areas of septa formation, while cytoplasm kept its structure within the observation time. Our study showed that cell membrane damage is critical for S. aureus viability; however, we believe that cell wall disorders should also be taken into account when analyzing the effects of the mechanisms of action of antimicrobial peptides (AMPs).


2019 ◽  
Vol 9 (21) ◽  
pp. 4706
Author(s):  
Feng ◽  
Jiang ◽  
Zhu ◽  
Jiang ◽  
Yin ◽  
...  

This work aimed to analyse the damaging effects of pulsed electric fields on Rhizoctonia solani. Design Expert software was used to design an orthogonal experiment. The cell membrane damage and cell wall damage were observed by scanning electron microscopy and quantitatively determined while using a conductivity metre and an ultraviolet spectrophotometer. The results showed that the cell membrane damage rate was correlated with the voltage amplitude and processing time (p < 0.01), while the effect of pulse duration was not significant (p > 0.05). Besides, the cell wall damage was related to electric field strength (voltage amplitude) (p < 0.01), while the pulse duration and processing time had no significant effect on that (p > 0.05). The optimal process parameters for this method were 25 kV/cm, 5 min., and a pulse duration of 60 µs. The optimised conditions were tested based on these results. When compared with Control Check (CK), the cell membrane damage rate was 48.72%, which was significantly higher than CK (p < 0.01).


2021 ◽  
Author(s):  
Delaram Poormoghadam ◽  
Bita Rasoulian Shiadeh ◽  
Fereshte Azedi ◽  
Hani Tavakol ◽  
Seyed Mahdi Rezayat ◽  
...  

Abstract Spinal cord injury (SCI) is a debilitating condition for which no definitive treatment has yet been identified. Noteworthy, it influences other tissues through inflammatory reactions and metabolic disturbance. Therefore, fingolimod (FTY-720) as an FDA-approved inflammatory modulator would be promising. In the present study, nanocarriers at two distinct monodisperse particle sizes of 60 (nF60) and 190 (nF190) nm were prepared.The neural stem cell (NSC) viability and LDH release were studied in the face of the nanocarriers and free FTY-720. Results indicated that nanocarriers and free FTY-720 enhanced NSC viability than the control group.However, nF190 significantly induced less cell membrane damage than nF60. Nanocarriers and free FTY-720 enhanced motor neuron recovery in SCI rats, while body weight and return to bladder reflux by nF190 was significantly higher than nF60 groups. Return to bladder reflux might be due to the role of FTY-720 in regulation of detrusor muscle tone and preservation of the integrity of vessels by acting on endothelial cells. Moreover,nF190 gained higher soleus muscle weight than the free drugs;probably decreasing pro-inflammatory cytokines in soleus diminish muscular atrophy in SCI rats.To sum thing up, larger nanacarrirs with less cell membrane damage seems to be more efficient than smaller ones to manage SCI.


2021 ◽  
Author(s):  
Romina Mitarotonda ◽  
Martín Saraceno ◽  
Marcos Todone ◽  
Exequiel Giorgi ◽  
Emilio L Malchiodi ◽  
...  

Aim: Nanoparticles (NPs) interaction with immune system is a growing topic of study. Materials & methods: Bare and amine grafted silica NPs effects on monocytes/macrophages cells were analyzed by flow cytometry, MTT test and LIVE/DEAD® viability/cytotoxicity assay. Results: Bare silica NPs inhibited proliferation and induced monocyte/macrophages activation (increasing CD40/CD80 expression besides pro-inflammatory cytokines and nitrite secretion). Furthermore, silica NPs increased cell membrane damage and reduced the number of living cells. In contrast, amine grafted silica NPs did not alter these parameters. Conclusion: Cell activation properties of bare silica NPs could be hindered after grafting with amine moieties. This strategy is useful to tune the immune system stimulation by NPs or to design NPs suitable to transport therapeutic molecules.


HortScience ◽  
2018 ◽  
Vol 53 (1) ◽  
pp. 97-101 ◽  
Author(s):  
Xunzhong Zhang ◽  
Wenli Wu ◽  
Erik H. Ervin ◽  
Chao Shang ◽  
Kim Harich

Plant hormones play an important role in plant adaptation to abiotic stress, but hormonal responses of cool-season turfgrass species to salt stress are not well documented. This study was carried out to investigate the responses of hormones to salt stress and examine if salt stress-induced injury was associated with hormonal alteration in kentucky bluegrass (KBG, Poa pratensis L.). The grass was grown in a growth chamber for 6 weeks and then subjected to salt stress (170 mm NaCl) for 28 days. Salt stress caused cell membrane damage, resulting in photosynthetic rate (Pn), chlorophyll (Chl), and turf quality decline in KBG. Salt stress increased leaf abscisic acid (ABA) and ABA/cytokinin (CK) ratio; reduced trans-zeatin riboside (ZR), isopentenyl adenosine (iPA), and indole-3-acetic acid (IAA), but did not affect gibberellin A4 (GA4). On average, salt stress reduced ZR by 67.4% and IAA by 58.6%, whereas it increased ABA by 398.5%. At the end of the experiment (day 28), turf quality, Pn, and stomatal conductance (gs) were negatively correlated with ABA and ABA/CK ratio, but positively correlated with ZR, iPA, and IAA. Electrolyte leakage (EL) was positively correlated with ABA and ABA/CK and negatively correlated with ZR, iPA, IAA, and GA4. GA4 was also positively correlated with turf quality and gs. The results of this study suggest that salt stress-induced injury of the cell membrane and photosynthetic function may be associated with hormonal alteration and imbalance in KBG.


Sign in / Sign up

Export Citation Format

Share Document