scholarly journals Title: Comparison of Test-Retest Reliability of Pseudo-continuous Arterial Spin Labelling (pCASL) and BOLD fMRI in a Multi-Site Study

Author(s):  
James W. Ibinson ◽  
Andrea G. Gillman ◽  
Vince Schmidthorst ◽  
Conrad Li ◽  
Vitaly Napadow ◽  
...  

Abstract Background: The establishment of test-retest reliability and reproducibility (TRR) is an important part of validating any research tool, including functional magnetic resonance imaging (fMRI). The primary objective of this study is to investigate the reliability of pseudo-Continuous Arterial Spin Labeling (pCASL) and Blood Oxygen Level Dependent (BOLD) fMRI data acquired across two different scanners in a sample of healthy adults. While single site/single scanner studies have shown acceptable repeatability, TRR of both in a practical multisite study occurring in two facilities spread out across the country with weeks to months between scans is critically needed.Methods: Ten subjects were imaged with similar 3T MRI scanners at the University of Pittsburgh and Massachusetts General Hospital. Finger-tapping and Resting-state data were acquired for both techniques. Analysis of the resting state data for functional connectivity was performed with the Functional Connectivity Toolbox, while analysis of the finger tapping data was accomplished with FSL. pCASL Blood flow data was generated using AST Toolbox. Activated areas and networks were identified via pre-defined atlases and dual-regression techniques. Analysis for TRR was conducted by comparing pCASL and BOLD images in terms of Intraclass correlation coefficients, Dice Similarity Coefficients, and repeated measures ANOVA.Results: Both BOLD and pCASL scans showed strong activation and correlation between the two locations for the finger tapping tasks. Functional connectivity analyses identified elements of the default mode network in all resting scans at both locations. Multivariate repeated measures ANOVA showed significant variability between subjects, but no significant variability for location. Global CBF was very similar between the two scanning locations, and repeated measures ANOVA showed no significant differences between the two scanning locations.Conclusions: The results of this study show that when similar scanner hardware and software is coupled with identical data analysis protocols, consistent and reproducible functional brain images can be acquired across sites. The variability seen in the activation maps is greater for pCASL versus BOLD images, as expected, however groups maps are remarkably similar despite the low number of subjects. This demonstrates that multi-site fMRI studies of task-based and resting state brain activity is feasible.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanzhi Bi ◽  
Xin Hou ◽  
Jiahui Zhong ◽  
Li Hu

AbstractPain perception is a subjective experience and highly variable across time. Brain responses evoked by nociceptive stimuli are highly associated with pain perception and also showed considerable variability. To date, the test–retest reliability of laser-evoked pain perception and its associated brain responses across sessions remain unclear. Here, an experiment with a within-subject repeated-measures design was performed in 22 healthy volunteers. Radiant-heat laser stimuli were delivered on subjects’ left-hand dorsum in two sessions separated by 1–5 days. We observed that laser-evoked pain perception was significantly declined across sessions, coupled with decreased brain responses in the bilateral primary somatosensory cortex (S1), right primary motor cortex, supplementary motor area, and middle cingulate cortex. Intraclass correlation coefficients between the two sessions showed “fair” to “moderate” test–retest reliability for pain perception and brain responses. Additionally, we observed lower resting-state brain activity in the right S1 and lower resting-state functional connectivity between right S1 and dorsolateral prefrontal cortex in the second session than the first session. Altogether, being possibly influenced by changes of baseline mental state, laser-evoked pain perception and brain responses showed considerable across-session variability. This phenomenon should be considered when designing experiments for laboratory studies and evaluating pain abnormalities in clinical practice.


2020 ◽  
Author(s):  
Arun S. Mahadevan ◽  
Ursula A. Tooley ◽  
Maxwell A. Bertolero ◽  
Allyson P. Mackey ◽  
Danielle S. Bassett

AbstractFunctional connectivity (FC) networks are typically inferred from resting-state fMRI data using the Pearson correlation between BOLD time series from pairs of brain regions. However, alternative methods of estimating functional connectivity have not been systematically tested for their sensitivity or robustness to head motion artifact. Here, we evaluate the sensitivity of six different functional connectivity measures to motion artifact using resting-state data from the Human Connectome Project. We report that FC estimated using full correlation has a relatively high residual distance-dependent relationship with motion compared to partial correlation, coherence and information theory-based measures, even after implementing rigorous methods for motion artifact mitigation. This disadvantage of full correlation, however, may be offset by higher test-retest reliability and system identifiability. FC estimated by partial correlation offers the best of both worlds, with low sensitivity to motion artifact and intermediate system identifiability, with the caveat of low test-retest reliability. We highlight spatial differences in the sub-networks affected by motion with different FC metrics. Further, we report that intra-network edges in the default mode and retrosplenial temporal sub-networks are highly correlated with motion in all FC methods. Our findings indicate that the method of estimating functional connectivity is an important consideration in resting-state fMRI studies and must be chosen carefully based on the parameters of the study.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e49847 ◽  
Author(s):  
Jie Song ◽  
Alok S. Desphande ◽  
Timothy B. Meier ◽  
Dana L. Tudorascu ◽  
Svyatoslav Vergun ◽  
...  

2014 ◽  
Vol 4 (7) ◽  
pp. 511-522 ◽  
Author(s):  
Rasmus M. Birn ◽  
Maria Daniela Cornejo ◽  
Erin K. Molloy ◽  
Rémi Patriat ◽  
Timothy B. Meier ◽  
...  

2018 ◽  
Vol 46 (9) ◽  
pp. 3788-3795
Author(s):  
Mengqi Liu ◽  
Zhiye Chen ◽  
Lin Ma

Objective This study was performed to evaluate the test–retest reliability of perfusion of the cortex and subcortical white matter on three-dimensional spiral fast spin echo pseudo-continuous arterial spin labeling (3D-ASL). Methods Eight healthy subjects underwent 3D-ASL and structural imaging at the same time each day for 1 week. ASL data acquisition was performed in the resting state and right finger-tapping state. Cerebral blood flow (CBF) images were calculated, and the CBF values of the precentral cortex (PCC) and precentral subcortical white matter (PCSWM) were automatically extracted based on the structural images and CBF images. Results In the resting state, the intraclass correlation coefficient (ICC) of the bilateral PCC was 0.84 (left) and 0.81 (right) and that of the bilateral SCWM was 0.89 (left) and 0.85 (right). In the finger-tapping state, the ICC of the bilateral PCC was 0.91 (left) and 0.87 (right) and that of the bilateral PCSWM was 0.87 (left) and 0.92 (right). The CBF value of the left PCC and PCSWM was not significantly different between the resting state and finger-tapping state on two ASL scans. Conclusion 3D-ASL provides reliable CBF measurement in the cortex and subcortical white matter in the resting or controlled state.


2016 ◽  
Author(s):  
Jiahui Wang ◽  
Yudan Ren ◽  
Xintao Hu ◽  
Vinh Thai Nguyen ◽  
Lei Guo ◽  
...  

AbstractFunctional connectivity analysis has become a powerful tool for probing the human brain function and its breakdown in neuropsychiatry disorders. So far, most studies adopted resting state paradigm to examine functional connectivity networks in the brain, thanks to its low demand and high tolerance that are essential for clinical studies. However, the test-retest reliability of resting state connectivity measures is moderate, potentially due to its low behavioral constraint. On the other hand, naturalistic neuroimaging paradigms, an emerging approach for cognitive neuroscience with high ecological validity, could potentially improve the reliability of functional connectivity measures. To test this hypothesis, we characterized the test-retest reliability of functional connectivity measures during a natural viewing condition, and benchmarked it against resting state connectivity measures acquired within the same functional magnetic resonance imaging (fMRI) session. We found that the reliability of connectivity and graph theoretical measures of brain networks is significantly improved during natural viewing conditions over resting state conditions, with an average increase of almost 50% across various connectivity measures. Not only sensory networks for audio-visual processing become more reliable, higher order brain networks, such as default mode and attention networks, also appear to show higher reliability during natural viewing. Our results support the use of natural viewing paradigms in estimating functional connectivity of brain networks, and have important implications for clinical application of fMRI.


NeuroImage ◽  
2018 ◽  
Vol 183 ◽  
pp. 907-918 ◽  
Author(s):  
Chao Zhang ◽  
Stefi A. Baum ◽  
Viraj R. Adduru ◽  
Bharat B. Biswal ◽  
Andrew M. Michael

2021 ◽  
Author(s):  
Faezeh Vedaei ◽  
Mahdi Alizadeh ◽  
Victor M Romo ◽  
Feroze B. Mohamed ◽  
Chengyuan Wu

Abstract Resting-state functional magnetic resonance imaging (rs-fMRI) has been known as a powerful tool in neuroscience. However, exploring the test-retest reliability of the metrics derived from rs-fMRI BOLD signal is essential particularly in the studies of patients with neurological development. Two factors affecting reliability of rs-fMRI measurements including the effect of anesthesia and scan length have been estimated in this study. A total of 9 patients with drug-resistant epilepsy (DRE) of requiring interstitial thermal therapy (LITT) were scanned in two states of awake and under anesthesia. At each state, two rs-fMRI sessions were obtained that each one lasted 15 minutes, and the effect of scan length was evaluated. Voxel-wise rs-fMRI metrics including amplitude of low fractional frequency fluctuation (ALFF), amplitude of low fractional frequency fluctuation (fALFF), functional connectivity (FC), and regional homogeneity (ReHo) were measured. Intraclass correlation coefficient (ICC) was calculated to estimate the reliability between two sessions of scanning for both states. Overall, our finding revealed that reliability improves under anesthesia as well as by increasing the scanning length of the scanning sessions. Furthermore, we showed that the optimal scan length to achieve reliable rs-fMRI measurements was 3.1 – 7.5 minutes shorter in an anesthetized, compared to wakeful state.


Sign in / Sign up

Export Citation Format

Share Document