scholarly journals Ultrafast Demagnetization Excited by Extreme Ultraviolet Light From a Free-Electron Laser

Author(s):  
André Philippi-Kobs ◽  
Leonard Müller ◽  
Magnus Berntsen ◽  
Wojciech Roseker ◽  
Matthias Riepp ◽  
...  

Abstract Ultrashort and intense extreme ultraviolet (XUV) and X-ray pulses readily available at free-electron lasers (FELs) enable studying non-linear light−matter interactions on femtosecond timescales. Here, we report on the non-linear fluence dependence of magnetic scattering of Co/Pt multilayers, using FERMI FEL’s 70-fs-long single and double XUV pulses, the latter with a temporal separation of 200 fs, with a photon energy slightly detuned to the Co M2,3 absorption edge. We observe a quenching in magnetic scattering that sets-in already in the non-destructive fluence regime of a few mJ/cm² typically used for FEL-probe experiments on magnetic materials. Calculations of the transient electronic structure in tandem with a phenomenological modeling of the experimental data by means of ultrafast demagnetization unambiguously show that XUV-radiation-induced demagnetization is the dominant mechanism for the quenching in the investigated fluence regime of <50 mJ/cm², while light-induced changes of the electronic core levels are predicted to additionally occur at higher fluences. The modeling of the data further indicates that the demagnetization proceeds on the sub-20-fs timescale. This ultrashort timescale is consistent with non-coherent models for ultrafast demagnetization, considering the sub-femtosecond lifetime of hot electrons with energies of a few 10 eV generated by the XUV radiation.

2020 ◽  
Author(s):  
Thomas Ding ◽  
Marc Rebholz ◽  
Lennart Aufleger ◽  
Maximilian Hartmann ◽  
Veit Stooß ◽  
...  

The emergence of ultra-intense extreme-ultraviolet (XUV) and X-ray free-electron lasers (FELs) has opened the door for the experimental realization of non-linear XUV and X-ray spectroscopy techniques. Here we demontrate an...


2021 ◽  
Author(s):  
Najmeh S. Mirian ◽  
Michele Di Fraia ◽  
Simone Spampinati ◽  
Filippo Sottocorona ◽  
Enrico Allaria ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7713
Author(s):  
Alyssa Tidmore ◽  
Sucharita M. Dutta ◽  
Arriyam S. Fesshaye ◽  
William K. Russell ◽  
Vania D. Duncan ◽  
...  

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Ding ◽  
Marc Rebholz ◽  
Lennart Aufleger ◽  
Maximilian Hartmann ◽  
Veit Stooß ◽  
...  

AbstractHigh-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics. It is implemented in XUV-only pump-probe transient-absorption geometry and provides in-situ information on the time-energy structure of FEL pulses. Using a rate-equation model for the time-dependent absorbance changes of an ionized neon target, we show how the frequency chirp can be directly extracted and quantified from measured data. Since the method does not rely on an additional external field, we expect a widespread implementation at FELs benefiting multiple science fields by in-situ on-target measurement and optimization of FEL-pulse properties.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Tine N. Christensen ◽  
Seppo W. Langer ◽  
Gitte Persson ◽  
Klaus Richter Larsen ◽  
Annemarie G. Amtoft ◽  
...  

Radiation-induced changes may cause a non-malignant high 2-deoxy-2-[18F]fluoro-d-glucose (FDG)-uptake. The 3′-deoxy-3′-[18F]fluorothymidine (FLT)-PET/CT performs better in the differential diagnosis of inflammatory changes and lung lesions with a higher specificity than FDG-PET/CT. We investigated the association between post-radiotherapy FDG-PET-parameters, FLT-PET-parameters, and outcome. Sixty-one patients suspected for having a relapse after definitive radiotherapy for lung cancer were included. All the patients had FDG-PET/CT and FLT-PET/CT. FDG-PET- and FLT-PET-parameters were collected from within the irradiated high-dose volume (HDV) and from recurrent pulmonary lesions. For associations between PET-parameters and relapse status, respectively, the overall survival was analyzed. Thirty patients had a relapse, of these, 16 patients had a relapse within the HDV. FDG-SUVmax and FLT-SUVmax were higher in relapsed HDVs compared with non-relapsed HDVs (median FDG-SUVmax: 12.8 vs. 4.2; p < 0.001; median FLT-SUVmax 3.9 vs. 2.2; p < 0.001). A relapse within HDV had higher FDG-SUVpeak (median FDG-SUVpeak: 7.1 vs. 3.5; p = 0.014) and was larger (median metabolic tumor volume (MTV50%): 2.5 vs. 0.7; 0.014) than the relapsed lesions outside of HDV. The proliferative tumor volume (PTV50%) was prognostic for the overall survival (hazard ratio: 1.07 pr cm3 [1.01–1.13]; p = 0.014) in the univariate analysis, but not in the multivariate analysis. FDG-SUVmax and FLT-SUVmax may be helpful tools for differentiating the relapse from radiation-induced changes, however, they should not be used definitively for relapse detection.


Nature ◽  
2009 ◽  
Vol 459 (7246) ◽  
pp. 587-591 ◽  
Author(s):  
Denis A. Smirnov ◽  
Michael Morley ◽  
Eunice Shin ◽  
Richard S. Spielman ◽  
Vivian G. Cheung

Sign in / Sign up

Export Citation Format

Share Document