scholarly journals Efficacy of Ginsenoside Rg3 Nanoparticles Against Ehrlich Solid Tumor Growth in Mice

Author(s):  
Mona A El-Banna ◽  
Omnia M Hendawy ◽  
Aziza A El-Nekeety ◽  
Mosaad A. Abdel-Wahhab

Abstract Solid tumors are fairly common and face many clinical difficulties since they are hardly surgically resectable and broadly do not respond to radiation and chemotherapy. The current study aimed to fabricate ginsenoside Rg3 nanoparticles (Rg3-NPs) and evaluate their antitumor effect against Ehrlich solid tumors (EST) in mice. Rg3-NPs were fabricated using whey protein isolates (WPI), maltodextrin (MD), and gum Arabic (GA). EST was developed by the injection of mice with Ehrlich ascites cells (2.5 x 106). The mice were divided into a control group, EST group, and the EST groups that were treated orally 2 weeks for with normal Rg3 (3 mg/kg b.w), Rg3-NPs at a low dose (3 mg/kg b.w), and Rg3-NPs at a high dose (6 mg/kg b.w). Serum and solid tumors were collected for different assays. The results revealed that synthesized Rg3-NPs showed a spherical shape with an average particle size of 20 nm and zeta potential of -5.58 mV. The in vivo study revealed that EST mice showed a significant increase in AFP, Casp3, TNF-α, MMP-9, VEGF, MDA DNA damage accompanied by a significant decrease in SOD and GPx. Treatment with Rg3 or Rg3-NPs decreased the tumor weight and size and induced a significant improvement in all the biochemical parameters. Rg3-NPs were more effective than Rg3 and the improvement was dose-dependent. It could be concluded that fabrication of Rg3-NPs enhanced the protective effect against EST development which may be due to the synergistic effect of Rg3 and MD, GA, and WPI.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2021 ◽  
Vol 39 (1B) ◽  
pp. 197-202
Author(s):  
Ghufran S. Jaber ◽  
Khawla S. Khashan ◽  
Maha J. Abbas

The effects of varying laser pulse numbers on the fabricated of ZnONPs by pulsed laser ablation in deionized water of Zn-metal are investigated. The Nd: YAG laser at energy 600mJ prepared three samples by change the laser pulse number (100, 150, and 200). The results were collected and examined using an electron scanning microscope, XRD – diffraction, and transmission electron microscope. The result revealed the colloidal spherical shape and the homogeneous composition of the ZnO NPs. The nanoparticles resulted in different concentrations and sized distributions by changing the pulse number of a laser. The average particle size and the mass concentration of particle size increase with an increasing number of laser pulses by fixed the laser energy.


2017 ◽  
Vol 6 (6) ◽  
pp. 517-526 ◽  
Author(s):  
Permender Rathee ◽  
Anjoo Kamboj ◽  
Shabir Sidhu

AbstractBackground:Piperine helps in the improvement of bioavailability through pharmacokinetic interaction by modulating metabolism when administered with other drugs. Nisoldipine is a substrate for cytochrome P4503A4 enzymes. The study was undertaken to assess the influence of piperine on the pharmacokinetics and pharmacodynamics of nisoldipine nanoparticles in rats.Methods:Optimization studies of nanoparticles were performed using Taguchi L9 orthogonal array, and the nanoparticles were formulated by the precipitation method. The influence of piperine and nanoparticles was evaluated by means of in vivo kinetic and dynamic studies by oral administration in rats.Results:The entrapment efficiency, drug loading, ζ potential, and average particle size of optimized nisoldipine-piperine nanoparticles was 89.77±1.06%, 13.6±0.56%, −26.5 mV, and 132±7.21 nm, respectively. The in vitro release in 0.1 n HCl and 6.8 pH phosphate buffer was 96.9±0.48% and 98.3±0.26%, respectively. Pharmacokinetic studies showed a 4.9-fold increase in oral bioavailability and a >28.376±1.32% reduction in systemic blood pressure by using nanoparticles as compared to control (nisoldipine suspension) in Wistar rats.Conclusion:The results revealed that piperine being an inhibitor of cytochrome P4503A4 enzymes enhanced the bioavailability of nisoldipine by 4.9-fold in nanoparticles.


2010 ◽  
Vol 8 (5) ◽  
pp. 1041-1046 ◽  
Author(s):  
Raúl Reza ◽  
Carlos Martínez Pérez ◽  
Claudia Rodríguez González ◽  
Humberto Romero ◽  
Perla García Casillas

AbstractIn this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.


2019 ◽  
Vol 31 (1) ◽  
pp. 225
Author(s):  
N. Gupta ◽  
K. Polkoff ◽  
L. Qiao ◽  
K. Cheng ◽  
J. Piedrahita

CRISPR/Cas systems present a powerful gene-editing tool with the potential for widespread therapeutic use; however, current methods of in vivo delivery such as adeno-associated viruses (AAV) may stimulate an immune response, creating the need for an alternative for delivery of CRISPR/Cas9. Exosomes are small vesicles that are released by cells and serve as a delivery system for RNA, proteins, and various molecules to other cells. The focus of this project was to use exosomes as a delivery system for Cas9, exploiting their high uptake by target cells and their ability to avoid the immune system in vivo. Porcine fetal fibroblasts (PFF) were grown to 80% confluency; after 48h, exosomes were isolated and concentrated from conditioned media by filtration with a 0.22-μm filter followed by 100-kDa molecular weight cutoff filter. Transmission electron microscopy, Western blotting for presence of CD81, and an uptake assay for exosomes stained with the lipophilic dye DiI (Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA) were used to characterise isolated exosomes, and average particle size was evaluated by NanoSight (Salisbury, United Kingdom). After characterisation, exosomes were loaded with Cas9 (PNA Bio, Newbury Park, CA, USA) using sonication, incubation with saponin, or extrusion. For each method of loading, 1.0×1011 exosomes and 500ng of Cas9 were used. For sonication, exosomes and Cas9 were sonicated 4 times: 4s on/2s off, left on ice for 2min, and then repeated for 4 more cycles. Loaded exosomes were then incubated at 37°C for 20min. For incubation with saponin, 100μL of 0.6% saponin solution was made in PBS, mixed with exosomes and Cas9, and then incubated on a shaker at 800 rpm for 20min. For extrusion, exosomes and Cas9 were extruded (Avanti Polar Lipids, Alabaster, AL, USA) 10, 15, or 20 times through a 0.22-μm filter. To evaluate efficiency of Cas9 loading into exosomes, loaded exosome samples were split in half, with one-half receiving a proteinase K digest (100μg mL−1) to remove free Cas9 and the other receiving no treatment. Proteinase K-treated and untreated samples were then compared side by side on Western blot staining for Cas9. ImageJ software (National Institutes for Health, Bethesda, MD, USA) was used to quantify band intensity and loading efficiency. With optimal conditions, our preliminary results show loading efficiency for sonication and saponin to be 16.7 and 19.2%, respectively, whereas loading by extrusion was undetectable. For CRISPR/Cas targeting, transgenic PFF carrying one copy of H2B-GFP were used to test delivery of ribonucleotide protein complex (RNP). To verify efficiency of the guide (g)RNA targeting green fluorescent protein (GFP), cells were nucleofected with Cas9 and gRNA. The DNA was extracted, PCR amplified, and sequenced (Eton Bioscience, San Diego, CA, USA) and then evaluated for indels with TIDE, resulting in a 53.2% cleavage efficiency. Next, exosomes will be loaded with RNP to knockout GFP in H2B-GFP cells, and targeting efficiency will be evaluated by flow cytometry and TIDE. We hypothesise that based on loading efficiency and target cell uptake, exosomes will present a safe and efficient method for in vitro and in vivo delivery of Cas9. The financial support of the Comparative Medicine Institute is gratefully acknowledged.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 589 ◽  
Author(s):  
Chang-baek Lim ◽  
Sharif Md Abuzar ◽  
Pankaj Ranjan Karn ◽  
Wonkyung Cho ◽  
Hee Jun Park ◽  
...  

Here, we aimed to prepare and optimize liposomal amphotericin B (AmB) while using the supercritical fluid of carbon dioxide (SCF-CO2) method and investigate the characteristics and pharmacokinetics of the SCF-CO2-processed liposomal AmB. Liposomes containing phospholipids, ascorbic acid (vit C), and cholesterol were prepared by the SCF-CO2 method at an optimized pressure and temperature; conventional liposomes were also prepared using the thin film hydration method and then compared with the SCF-CO2-processed-liposomes. The optimized formulation was evaluated by in vitro hemolysis tests on rat erythrocytes and in vivo pharmacokinetics after intravenous administration to Sprague-Dawley rats and compared with a marketed AmB micellar formulation, Fungizone®, and a liposomal formulation, AmBisome®. The results of the characterization studies demonstrated that the SCF-CO2-processed-liposomes were spherical particles with an average particle size of 137 nm (after homogenization) and drug encapsulation efficiency (EE) was about 90%. After freeze-drying, mean particle size, EE, and zeta potential were not significantly changed. The stability study of the liposomes showed that liposomal AmB that was prepared by the SCF method was stable over time. In vivo pharmacokinetics revealed that the SCF-CO2-processed-liposomes were bioequivalent to AmBisome®; the hemolytic test depicted less hematotoxicity than Fungizone®. Therefore, this method could serve as a potential alternative for preparing liposomal AmB for industrial applications.


Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 21 ◽  
Author(s):  
Yumei Lian ◽  
Xuerui Wang ◽  
Pengcheng Guo ◽  
Yichen Li ◽  
Faisal Raza ◽  
...  

Arsenic trioxide (ATO) has a significant effect on the treatment of acute promyelocytic leukemia (APL) and advanced primary liver cancer, but it still faces severe side effects. Considering these problems, red blood cell membrane-camouflaged ATO-loaded sodium alginate nanoparticles (RBCM-SA-ATO-NPs, RSANs) were developed to relieve the toxicity of ATO while maintaining its efficacy. ATO-loaded sodium alginate nanoparticles (SA-ATO-NPs, SANs) were prepared by the ion crosslinking method, and then RBCM was extruded onto the surface to obtain RSANs. The average particle size of RSANs was found to be 163.2 nm with a complete shell-core bilayer structure, and the average encapsulation efficiency was 14.31%. Compared with SANs, RAW 264.7 macrophages reduced the phagocytosis of RSANs by 51%, and the in vitro cumulative release rate of RSANs was 95% at 84 h, which revealed a prominent sustained release. Furthermore, it demonstrated that RSANs had lower cytotoxicity as compared to normal 293 cells and exhibited anti-tumor effects on both NB4 cells and 7721 cells. In vivo studies further showed that ATO could cause mild lesions of main organs while RSANs could reduce the toxicity and improve the anti-tumor effects. In brief, the developed RSANs system provides a promising alternative for ATO treatment safely and effectively.


2015 ◽  
Vol 36 (3) ◽  
pp. 988-1003 ◽  
Author(s):  
Hamed Karimian ◽  
Mehran Fadaeinasab ◽  
Soheil Zorofchian Moghadamtousi ◽  
Maryam Hajrezaei ◽  
Maryam Zahedifard ◽  
...  

Background: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models. Methods and Results: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels. Conclusion: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.


2010 ◽  
Vol 92 ◽  
pp. 163-169
Author(s):  
Hong Xia Qiao ◽  
Zhi Qiang Wei ◽  
Ming Ru Zhou ◽  
Zhong Mao He

Copper nanoparticles were successfully prepared in large scales by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the crystal structure of the samples is fcc structure as same as that of the bulk materials. The specific surface area is is 11 m2/g, with the particle size distribution ranging from 30 to 90 nm, the average particle size about 67nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles have uniform size, higher purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.


2007 ◽  
Vol 124-126 ◽  
pp. 799-802
Author(s):  
Tak Hyoung Lim ◽  
Gil Yong Lee ◽  
Dong Hyun Peck ◽  
Rak Hyun Song ◽  
Dong Ryul Shin

The characteristics of La0.8Sr0.05Ca0.15CrO3 interconnect material synthesized by modified pechini method, USP, and GNP was investigated. The powder synthesized by Pechini method exhibited somewhat aggregated shape. The precursor synthesized by USP had spherical shape and their particle size decreased somewhat after calcining procedure at 1000oC. In the case of GNP, the precursor formed agglomerated particles. The average particle size of powders synthesized by Pechini method, USP, and GNP were 0.4+m, 0.6+m, and below 10nm, respectively. The La0.8Sr0.05Ca0.15CrO3 powder had a single perovskite phase and orthorhombic structure. After sintering at 1400oC and 1500oC, the relative density of samples synthesized by pechini method was approximately 95% and that of samples synthesized by USP was slightly small. However, that of the samples synthesized by GNP was approximately 92%.


Sign in / Sign up

Export Citation Format

Share Document