scholarly journals Generative Adversarial Network Based Rogue Device Identification Using Differential Constellation Trace Figure

2020 ◽  
Author(s):  
Zekun Chen ◽  
Linning Peng ◽  
Aiqun Hu ◽  
Hua Fu

Abstract With the dramatic development of the internet of things (IoT), security issues such as identity authentication have received serious attention. The radio frequency (RF) fingerprint of IoT device is an inherent feature, which can hardly be imitated. In this paper, we propose a rogue device identification technique via RF fingerprinting using deep learning-based generative adversarial network (GAN). Being different from traditional classification problems in RF fingerprint identifications, this work focuses on unknown accessing device recognition without prior information. A differential constellation trace figure (DCTF) generation process is initially employed to transform RF fingerprint features from time-domain waveforms to 2-dimensional (2D) figures. Then, by using GAN, which is a kind of unsupervised learning algorithm, we can discriminate rogue devices without any prior information. An experimental verification system is built with 54 ZigBee devices regarded as recognized devices and accessing devices. A USRP receiver is used to capture the signal and identify the accessing devices. Experimental results show that the proposed rogue device identification method can achieve 95% identification accuracy in a real environment.

2021 ◽  
Author(s):  
Zekun Chen ◽  
Linning Peng ◽  
Aiqun Hu ◽  
Hua Fu

Abstract With the dramatic development of the internet of things (IoT), security issues such as identity authentication have received serious attention. The radio frequency (RF) fingerprint of IoT device is an inherent feature, which can hardly be imitated. In this paper, we propose a rogue device identification technique via RF fingerprinting using deep learning-based generative adversarial network (GAN). Being different from traditional classification problems in RF fingerprint identifications, this work focuses on unknown accessing device recognition without prior information. A differential constellation trace figure (DCTF) generation process is initially employed to transform RF fingerprint features from time-domain waveforms to 2-dimensional (2D) figures. Then, by using GAN, which is a kind of unsupervised learning algorithm, we can discriminate rogue devices without any prior information. An experimental verification system is built with 54 ZigBee devices regarded as recognized devices and accessing devices. A Universal Software Radio Peripheral (USRP) receiver is used to capture the signal and identify the accessing devices. Experimental results show that the proposed rogue device identification method can achieve 95%identification accuracy in a real environment.


Author(s):  
Zekun Chen ◽  
Linning Peng ◽  
Aiqun Hu ◽  
Hua Fu

AbstractWith the dramatic development of the internet of things (IoT), security issues such as identity authentication have received serious attention. The radio frequency (RF) fingerprint of IoT device is an inherent feature, which can hardly be imitated. In this paper, we propose a rogue device identification technique via RF fingerprinting using deep learning-based generative adversarial network (GAN). Being different from traditional classification problems in RF fingerprint identifications, this work focuses on unknown accessing device recognition without prior information. A differential constellation trace figure generation process is initially employed to transform RF fingerprint features from time-domain waveforms to two-dimensional figures. Then, by using GAN, which is a kind of unsupervised learning algorithm, we can discriminate rogue devices without any prior information. An experimental verification system is built with 54 ZigBee devices regarded as recognized devices and accessing devices. A universal software radio peripheral receiver is used to capture the signal and identify the accessing devices. Experimental results show that the proposed rogue device identification method can achieve 95% identification accuracy in a real environment.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 414 ◽  
Author(s):  
Traian Caramihale ◽  
Dan Popescu ◽  
Loretta Ichim

The detection of human emotions has applicability in various domains such as assisted living, health monitoring, domestic appliance control, crowd behavior tracking real time, and emotional security. The paper proposes a new system for emotion classification based on a generative adversarial network (GAN) classifier. The generative adversarial networks have been widely used for generating realistic images, but the classification capabilities have been vaguely exploited. One of the main advantages is that by using the generator, we can extend our testing dataset and add more variety to each of the seven emotion classes we try to identify. Thus, the novelty of our study consists in increasing the number of classes from N to 2N (in the learning phase) by considering real and fake emotions. Facial key points are obtained from real and generated facial images, and vectors connecting them with the facial center of gravity are used by the discriminator to classify the image as one of the 14 classes of interest (real and fake for seven emotions). As another contribution, real images from different emotional classes are used in the generation process unlike the classical GAN approach which generates images from simple noise arrays. By using the proposed method, our system can classify emotions in facial images regardless of gender, race, ethnicity, age and face rotation. An accuracy of 75.2% was obtained on 7000 real images (14,000, also considering the generated images) from multiple combined facial datasets.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhangguo Tang ◽  
Junfeng Wang ◽  
Huanzhou Li ◽  
Jian Zhang ◽  
Junhao Wang

In the intelligent era of human-computer symbiosis, the use of machine learning method for covert communication confrontation has become a hot topic of network security. The existing covert communication technology focuses on the statistical abnormality of traffic behavior and does not consider the sensory abnormality of security censors, so it faces the core problem of lack of cognitive ability. In order to further improve the concealment of communication, a game method of “cognitive deception” is proposed, which is aimed at eliminating the anomaly of traffic in both behavioral and cognitive dimensions. Accordingly, a Wasserstein Generative Adversarial Network of Covert Channel (WCCGAN) model is established. The model uses the constraint sampling of cognitive priors to construct the constraint mechanism of “functional equivalence” and “cognitive equivalence” and is trained by a dynamic strategy updating learning algorithm. Among them, the generative module adopts joint expression learning which integrates network protocol knowledge to improve the expressiveness and discriminability of traffic cognitive features. The equivalent module guides the discriminant module to learn the pragmatic relevance features through the activity loss function of traffic and the application loss function of protocol for end-to-end training. The experimental results show that WCCGAN can directly synthesize traffic with comprehensive concealment ability, and its behavior concealment and cognitive deception are as high as 86.2% and 96.7%, respectively. Moreover, the model has good convergence and generalization ability and does not depend on specific assumptions and specific covert algorithms, which realizes a new paradigm of cognitive game in covert communication.


2020 ◽  
Author(s):  
Wenjie Liu ◽  
Ying Zhang ◽  
Zhiliang Deng ◽  
Jiaojiao Zhao ◽  
Lian Tong

Abstract As an emerging field that aims to bridge the gap between human activities and computing systems, human-centered computing (HCC) in cloud, edge, fog has had a huge impact on the artificial intelligence algorithms. The quantum generative adversarial network (QGAN) is considered to be one of the quantum machine learning algorithms with great application prospects, which also should be improved to conform to the human-centered paradigm. The generation process of QGAN is relatively random and the generated model does not conform to the human-centered concept, so it is not quite suitable for real scenarios. In order to solve these problems, a hybrid quantum-classical conditional generative adversarial network (QCGAN) algorithm is proposed, which is a knowledge-driven human-computer interaction computing mode in cloud. The purpose of stabilizing the generation process and the interaction between human and computing process is achieved by inputting conditional information in the generator and discriminator. The generator uses the parameterized quantum circuit with an all-to-all connected topology, which facilitates the tuning of network parameters during the training process. The discriminator uses the classical neural network, which effectively avoids the ”input bottleneck” of quantum machine learning. Finally, the BAS training set is selected to conduct experiment on the quantum cloud computing platform. The result shows that the QCGAN algorithm can effectively converge to the Nash equilibrium point after training and perform human-centered classification generation tasks.


2020 ◽  
Author(s):  
Xinzheng Lu ◽  
Wenjie Liao ◽  
Yuli Huang ◽  
Zhe Zheng ◽  
Yuanqing Lin

Abstract Artificial intelligence is transforming many industries and reshaping building design processes to be smarter and automated. While a large number of studies on automated building design have been carried out recently, they focused on architectural aspects, leaving a gap in its application to structural design. Considering the increasingly wide application of shear wall systems in high-rise buildings and envisioning the massive benefit of automated structural design, this paper proposes a shear-wall design automation model based on a generative adversarial network (GAN). Its goal is to learn from existing shear wall design documents and then perform structural design intelligently and swiftly. To this end, a database of representative architectural and structural design documents was developed. Then, datasets were prepared via abstraction, semanticization, classification, and parameterization in terms of building height and seismic design category. The GAN model improved its shear wall design proficiency through adversarial training supported by data and hyper-parametric analytics. The performance of the trained GAN model was appraised against the metrics based on the confusion matrix and the intersection-over-union approach. Finally, case studies were conducted to evaluate the applicability, effectiveness, and appropriateness of the innovative GAN-based structural design method.


2021 ◽  
Vol 38 (3) ◽  
pp. 619-627
Author(s):  
Kazim Firildak ◽  
Muhammed Fatih Talu

Pneumonia, featured by inflammation of the air sacs in one or both lungs, is usually detected by examining chest X-ray images. This paper probes into the classification models that can distinguish between normal and pneumonia images. As is known, trained networks like AlexNet and GoogleNet are deep network architectures, which are widely adopted to solve many classification problems. They have been adapted to the target datasets, and employed to classify new data generated through transfer learning. However, the classical architectures are not accurate enough for the diagnosis of pneumonia. Therefore, this paper designs a capsule network with high discrimination capability, and trains the network on Kaggle’s online pneumonia dataset, which contains chest X-ray images of many adults and children. The original dataset consists of 1,583 normal images, and 4,273 pneumonia images. Then, two data augmentation approaches were applied to the dataset, and their effects on classification accuracy were compared in details. The model parameters were optimized through five different experiments. The results show that the highest classification accuracy (93.91% even on small images) was achieved by the capsule network, coupled with data augmentation by generative adversarial network (GAN), using optimized parameters. This network outperformed the classical strategies.


2021 ◽  
Author(s):  
Tian Xiang Gao ◽  
Jia Yi Li ◽  
Yuji Watanabe ◽  
Chi Jung Hung ◽  
Akihiro Yamanaka ◽  
...  

Abstract Sleep-stage classification is essential for sleep research. Various automatic judgment programs including deep learning algorithms using artificial intelligence (AI) have been developed, but with limitations in data format compatibility, human interpretability, cost, and technical requirements. We developed a novel program called GI-SleepNet, generative adversarial network (GAN)-assisted image-based sleep staging for mice that is accurate, versatile, compact, and easy to use. In this program, electroencephalogram and electromyography data are first visualized as images and then classified into three stages (wake, NREM, and REM) by a supervised image learning algorithm. To increase the accuracy, we adopted GAN and artificially generated fake REM sleep data to equalize the number of stages. This resulted in improved accuracy, and as few as one mouse data yielded significant accuracy. Because of its image-based nature, it is easy to apply to data of different formats, of different species of animals, and even outside of sleep research. Image data can be easily understood by humans, thus especially confirmation by experts is easy when there are some anomalies of prediction. Because deep learning of images is one of the leading fields in AI, numerous algorithms are also available.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi Gu ◽  
Qiankun Zheng

Background. The generation of medical images is to convert the existing medical images into one or more required medical images to reduce the time required for sample diagnosis and the radiation to the human body from multiple medical images taken. Therefore, the research on the generation of medical images has important clinical significance. At present, there are many methods in this field. For example, in the image generation process based on the fuzzy C-means (FCM) clustering method, due to the unique clustering idea of FCM, the images generated by this method are uncertain of the attribution of certain organizations. This will cause the details of the image to be unclear, and the resulting image quality is not high. With the development of the generative adversarial network (GAN) model, many improved methods based on the deep GAN model were born. Pix2Pix is a GAN model based on UNet. The core idea of this method is to use paired two types of medical images for deep neural network fitting, thereby generating high-quality images. The disadvantage is that the requirements for data are very strict, and the two types of medical images must be paired one by one. DualGAN model is a network model based on transfer learning. The model cuts the 3D image into multiple 2D slices, simulates each slice, and merges the generated results. The disadvantage is that every time an image is generated, bar-shaped “shadows” will be generated in the three-dimensional image. Method/Material. To solve the above problems and ensure the quality of image generation, this paper proposes a Dual3D&PatchGAN model based on transfer learning. Since Dual3D&PatchGAN is set based on transfer learning, there is no need for one-to-one paired data sets, only two types of medical image data sets are needed, which has important practical significance for applications. This model can eliminate the bar-shaped “shadows” produced by DualGAN’s generated images and can also perform two-way conversion of the two types of images. Results. From the multiple evaluation indicators of the experimental results, it can be analyzed that Dual3D&PatchGAN is more suitable for the generation of medical images than other models, and its generation effect is better.


Author(s):  
Dr. S. Saraswathi ◽  
S. Ramya

This paper focuses on speech derverberation using a single microphone. We investigate the applicability of fully convolutional networks (FCN) to enhance the speech signal represented by short-time Fourier transform (STFT) images in light of their recent success in many image processing applications. We present two variants: a "U-Net," which is an encoder-decoder network with skip connections, and a generative adversarial network (GAN) with the U-Net as the generator, which produces a more intuitive cost function for training. To assess our method, we used data from the REVERB challenge and compared our results to those of other methods tested under the same conditions. In most cases, we discovered that our method outperforms the competing methods.


Sign in / Sign up

Export Citation Format

Share Document