scholarly journals Rutin Ameliorates Malaria Pathogenesis by Modulating Inflammatory Mechanism: An In-Vitro and In-Vivo Study

Author(s):  
Divya Bhatt ◽  
Saurabh Kumar ◽  
Parmanand Kumar ◽  
Surbhi Bisht ◽  
Anil Kumar Maurya ◽  
...  

Abstract Rutin (3,3’,4’ 5,7-pentahydroxyflavone-3-rhamnoglucoside) is a flavonoid glycoside, found in many edible plants such as buckwheat and berries. Rutin as a food supplement is recommended for the treatment of various diseases, which directed us to investigate its valuable effects in malaria induced pathogenesis. In the present study, Rutin was tested for its anti-plasmodial activity against chloroquine sensitive and resistant strains (NF-54 and K1) of Plasmodium falciparum and studied for its anti-oxidative and anti-inflammatory potential against LPS stimulated macrophage cells. In vitro observations were further validated using an in-vivo physiological rodent model of Plasmodium berghei-induced malaria pathogenesis. Rutin was also tested for its effect in combination with chloroquine.Rutin was found to have potent anti-plasmodial activity against both chloroquine sensitive and resistant strains of P. falciparum (NF-54 and K1). It was able to reduce the oxidative stress induced by LPS in macrophage cells with decreased production of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β). Rutin was found to significantly suppress the parasitaemia, increase the mean survival time and restored the haemoglobin and glucose level in in vivo assays. This was corroborated by reduced production of malondialdehyde (MDA) and pro-inflammatory mediators in rutin treated mice in P.berghei-induced malaria pathogenesis. Interestingly, the combination of rutin with chloroquine had shown synergy in both in vitro and in vivo experiments. The findings of the present study thus highlighted the suitability of rutin for further study in the management of drug resistant malaria, alone or in combination with other compounds.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100
Author(s):  
Anna K Gazha ◽  
Lyudmila A. Ivanushko ◽  
Eleonora V. Levina ◽  
Sergey N. Fedorov ◽  
Tatyana S. Zaporozets ◽  
...  

The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen.


2011 ◽  
Vol 49 (2) ◽  
pp. 168-173
Author(s):  
F. Sachse ◽  
K. Becker ◽  
T.J. Basel ◽  
D. Weiss ◽  
C. Rudack

BACKGROUND: Nasal polyposis (NP) is considered a subgroup within chronic rhinosinusitis. NP can be further subdivided into aspirin sensitive- and aspirin tolerant types (ASNP/ ATNP). Although the true etiology of NP has not been identified so far, it is agreed that NP represents an inflammatory disease of the nasal mucosa. Alterations of cellular kinase activities including that of IKK-2 might play a role in this inflammatory process. METHODS: Paraffin sections of ASNP, ATNP and controls were immunostained with Phospho-IkB-α antibody that detects the direct IKK-2 product (IkB-α. Intensity of epithelial staining was analysed semi-quantitatively by two independent observers. In cultured nasal polyp epithelial cells (NPECs) epithelial derived cytokines IL-8 and GRO α were induced by TNF-α or Staphylococcal supernatants and subsequently repressed by IKK-2 inhibitor TPCA-1. RESULTS: Significant Phospho-IkB-α staining was observed in the nasal epithelium of ASNP compared to ATNP and controls suggesting strong IKK-2 activation in patients with ASNP in vivo. In vitro, pro-inflammatory cytokines IL-8 and GRO-α in NPECs were significantly repressed by TPCA-1. CONCLUSION: IKK-2 activity is increased in the subgroup of ASNP. IL-8 and GRO-α responses were repressed by IKK-2 inhibitor TPCA-1 in vitro. IKK-2 inhibitors might represent a potential target for anti-inflammatory intervention in ASNP.


2020 ◽  
Author(s):  
Xiaohan Liu ◽  
Siwen Li ◽  
Yuan Meng ◽  
Yu Fan ◽  
Ce Shi ◽  
...  

Abstract Titanium implantation is widely used for dental replacement with advantages of excellent mechanical strength, corrosion resistance, chemical stability and biocompatibility. Some patients, however, are subject to the failure of implantation due to bone resorption, which closely related to the inflammatory responses without clear mechanisms. In this study, first we found that there were inflammatory responses and increases of osteoclasts in the surrounding tissues near by the titanium implant. Further, data revealed that the C3 was increased in the serum and surrounding tissues near by the titanium implant, and activated by classical and alternative pathways. Next, we recognized that the C3a/C3aR, no C3b played an important role in stimulating secretions of pro-inflammatory cytokines of TNF-α and MMP9 via transcription factors NF-kB and NFATc1. This cascade of responses to titanium implant leaded the differentiation and proliferation of osteoclasts in vivo and in vitro, bone resorption of surrounding tissues of Ti implant. These suggest that the cleaved C3a fragment plays predominant roles in the activation of osteoclast. Therefore, the blocking C3a activation should provide potential to prevent bone resorption and prolong the survival of biomaterial implants.


2021 ◽  
Vol 22 (15) ◽  
pp. 7937
Author(s):  
Juan Antonio Giménez-Bastida ◽  
Antonio González-Sarrías ◽  
José Moisés Laparra-Llopis ◽  
Claus Schneider ◽  
Juan Carlos Espín

5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1β), prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways. Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols. This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human, animal, and cellular studies, respectively) compared to the thousands of studies focusing on the COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin, nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the anti-inflammatory mechanisms of (poly)phenols.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1349
Author(s):  
Bo Yang ◽  
Mingjie Li ◽  
Shuo Wang ◽  
R. Paul Ross ◽  
Catherine Stanton ◽  
...  

Lactobacillus ruminis can stimulate the immune response in vitro, but previous studies were only carried out in vitro and the anti-inflammatory effects of L. ruminis needs more in vivo evidences. In this study, the immune regulation and potential mechanisms of L. ruminis was investigated in DSS-induced colitis mice. L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 relieved the symptoms of colitis, including inhibition of colon shortening and colon tissue damage. L. ruminis FXJWS27L3 significantly reduced the pro-inflammatory cytokines IL-1β, TNF-α, and IL-17, while L. ruminis FXJSW17L1 significantly increased short chain fatty acids in mice feces. Moreover, L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 treatments significantly increased the gut microbiota diversity and balance the intestine microbiota profiles, which improved the imbalance of intestine microbiota composition to a certain extent. The results showed that L. ruminis can alleviate DSS-induced colitis, which possibly was related to promoting the expression of pro-inflammatory cytokines, up-regulating SCFAs and restoring the imbalance of gut microbiota.


1993 ◽  
Vol 70 (04) ◽  
pp. 676-680 ◽  
Author(s):  
H F Kotzé ◽  
V van Wyk ◽  
P N Badenhorst ◽  
A du P Heyns ◽  
J P Roodt ◽  
...  

SummaryPlatelets were isolated from blood of baboons and treated with neuraminidase to remove platelet membrane sialic acid, a process which artificially ages the platelets. The platelets were then labelled with 111In and their mean life span, in vivo distribution and sites of Sequestration were measured. The effect of removal of sialic acid on the attachment of immunoglobulin to platelets were investigated and related to the Sequestration of the platelets by the spleen, liver, and bone marrow. Removal of sialic acid by neuraminidase did not affect the aggregation of platelets by agonists in vitro, nor their sites of Sequestration. The removal of 0.51 (median, range 0.01 to 2.10) nmol sialic acid/108 platelets shortened their life span by 75 h (median, range 0 to 132) h (n = 19, p <0.001), and there was an exponential correlation between the shortening of the mean platelet life span and the amount of sialic acid removed. The increase in platelet-associated IgG was 0.112 (median, range 0.007 to 0.309) fg/platelet (n = 25, p <0.001) after 0.79 (median, range 0.00 to 6.70) nmol sialic acid/108 platelets was removed (p <0.001). There was an exponential correlation between the shortening of mean platelet life span after the removal of sialic acid and the increase in platelet-associated IgG. The results suggest that platelet membrane sialic acid influences ageing of circulating platelets, and that the loss of sialic acid may have exposed a senescent cell antigen that binds IgG on the platelet membrane. The antibody-antigen complex may then provide a signal to the macrophages that the platelet is old, and can be phagocytosed and destroyed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Dalal ◽  
Abdul Wahab Allaf ◽  
Hind El-Zein

AbstractSelf-nanoemulsifying drug delivery systems (SNEDDS) were used to enhance the dissolution rate of furosemide as a model for class IV drugs and the system was solidified into liquisolid tablets. SNEDDS of furosemide contained 10% Castor oil, 60% Cremophor EL, and 30% PEG 400. The mean droplets size was 17.9 ± 4.5 nm. The theoretical model was used to calculate the amounts of the carrier (Avicel PH101) and coating materials (Aerosil 200) to prepare liquisolid powder. Carrier/coating materials ratio of 5/1 was used and Ludipress was added to the solid system, thus tablets with hardness of 45 ± 2 N were obtained. Liquisolid tablets showed 2-folds increase in drug release as compared to the generic tablets after 60 min in HCl 0.1 N using USP apparatus-II. Furosemide loaded SNEDDS tablets have great prospects for further in vivo studies, and the theoretical model is useful for calculating the adequate amounts of adsorbents required to solidify these systems.


2020 ◽  
Vol 35 (3) ◽  
pp. 233-238
Author(s):  
Muflihatul Muniroh

AbstractThe exposure of methylmercury (MeHg) has become a public health concern because of its neurotoxic effect. Various neurological symptoms were detected in Minamata disease patients, who got intoxicated by MeHg, including paresthesia, ataxia, gait disturbance, sensory disturbances, tremors, visual, and hearing impairments, indicating that MeHg could pass the blood-brain barrier (BBB) and cause impairment of neurons and other brain cells. Previous studies have reported some expected mechanisms of MeHg-induced neurotoxicity including the neuroinflammation pathway. It was characterized by the up-regulation of numerous pro-inflammatory cytokines expression. Therefore, the use of anti-inflammatories such as N-acetyl-l-cysteine (NAC) may act as a preventive compound to protect the brain from MeHg harmful effects. This mini-review will explain detailed information on MeHg-induced pro-inflammatory cytokines activation as well as possible preventive strategies using anti-inflammation NAC to protect brain cells, particularly in in vivo and in vitro studies.


Sign in / Sign up

Export Citation Format

Share Document