scholarly journals Theoretical and Experimental Investigation of the Electronic and Optical Properties of Pure and Interstitial Nitrogen -Doped (TiO2)n Cluster

Author(s):  
Shaida Kakil ◽  
Hewa Y Abdullah ◽  
Tahseen G. Abdullah

Abstract The structural and electronic properties of pure and nitrogen-doped TiO2 nanoclusters are investigated using density functional theory (DFT) with vibrational modes. We performed numerical simulation using two methods based on theories at the Quantum Espresso/PBE and Gaussian/B3LYP/631G (d) levels. The properties of a single nitrogen-doped (TiO2)n nanocluster are also computed in this study. In both cases, interstitial and substitutional Nitrogen doping at all accessible sites was examined. For the experiment, Supersonic Cluster Beam Deposition (SCBD) was used to create pure and nitrogen-doped TiO2 films of nanocluster assemblies. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy, and Raman techniques were used to characterize these samples. The binding energies (Np, O2s, Ti 2p1/2, and Ti 2p3/2) of N-doped TiO2 were estimated using XPS spectral results. The UV-Vis measurement confirmed the previously stated reasoning about the quantum size effect on the band gap of the pure and nitrogen doped TiO2 nanocluster. The theoretical vibrational modes frequencies are calculated using the B3LYP/6-31G (d) functional via the Gaussian16 code's implementation algorithm. The good agreement between simulation and experimental results implies that a significant advantage of interstitial over substitutional positions. N-O vibration modes appeared in interstitial doped TiO2, and each vibration was dependent on a different cluster structure.

2021 ◽  
Author(s):  
Ian Murphy ◽  
Peter Rice ◽  
Madison Monahan ◽  
Leo Zasada ◽  
Elisa Miller ◽  
...  

Covalent functionalization of Ni2P nanocrystals was demonstrated using aryl-diazonium salts. Spontaneous adsorption of aryl functional groups was observed, with surface coverages ranging from 20-96% depending on the native reactivity of the salt as determined by the aryl substitution pattern. Increased coverage was possible for low reactivity species using a sacrificial reductant. Functionalization was confirmed using thermogravimetric analysis, FTIR and X-ray photoelectron spectroscopy. The structure and energetics of this nanocrystal electrocatalyst system, as a function of ligand coverage, was explored with density functional theory calculations. The Hammett parameter of the surface functional group was found to linearly correlate with the change in Ni and P core-electron binding energies and the nanocrystal’s experimentally and computationally determined work-function. The electrocatalytic activity and stability of the functionalized nanocrystals for hydrogen evolution were also improved when compared to the unfunctionalized material, but a simple trend based on electrostatics was not evident. We used density functional theory to understand this discrepancy and found that H adsorption energies on the covalently functionalized Ni2P also do not follow the electrostatic trend and are predictive descriptors of the experimental results.


2018 ◽  
Author(s):  
Steven Daly ◽  
Massimiliano Porrini ◽  
Frédéric Rosu ◽  
Valerie Gabelica

In solution, UV-vis spectroscopy is often used to investigate structural changes in biomolecules (i.e., nucleic acids), owing to changes in the environment of their chromophores (i.e., the nucleobases). Here we address whether action spectroscopy could achieve the same for gas-phase ions, while taking the advantage of additional mass spectrometry and ion mobility separation of complex mixtures. We therefore systematically studied the action spectroscopy of homo-base 6-mer DNA strands (dG6, dA6, dC6, dT6), and discuss the results in light of gas-phase structures validated by ion mobility spectrometry and infrared ion spectroscopy, and in light of electron binding energies measured by photoelectron spectroscopy, and calculated electronic photo-absorption spectra. When UV photons interact with oligonucleotide polyanions, two main actions may take place: (1) fragmentation and (2) electron detachment. The action spectra reconstructed from fragmentation follow the absorption spectra well, and result from multiple cycles of absorption and internal conversion. The action spectra reconstructed from the electron photodetachment (EPD) efficiency reveal interesting phenomena: EPD depends on the charge state in a manner depending on electron binding energies, and is particularly efficient for purines but not pyrimidines. EPD thus reflects not only absorption, but also particular relaxation pathways of the electronic excited states. As these pathways lead to photo-oxidation, their investigation on model gas-phase systems may prove useful to elucidate mechanisms of photo-oxidative damages, which are linked to mutations and cancers.


2021 ◽  
Author(s):  
Richard Asamoah Opoku

<p><strong>Céline TOUBIN</strong><strong><sup>2</sup></strong><strong> and </strong><strong>André Severo Pereira GOMES</strong><strong><sup> 3</sup></strong></p><p><sup>2,3</sup> Laboratoire de Physique des Lasers, des atomes et des Molécules, Université de Lille, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France</p><p>E-mail : [email protected]<sup>2</sup> ; [email protected]<sup>3</sup></p><p>Ice plays an essential role as a catalyst for reactions between atmospheric trace gases. The uptake of trace gases to ice has been proposed to have a major impact on geochemical cycles, human health, and ozone depletion in the stratosphere [1]. X-ray photoelectron spectroscopy (XPS) [2], serves as a powerful technique to characterize the elemental composition of such interacting species due to its surface sensitivity. Given the existence of complex physico-chemical processes such as adsorption, desorption, and migration within ice matrix, it is important to establish a theoretical framework to determine the electronic properties of these species under different conditions such as temperature and concentration. The focus of this work is to construct an embedding methodology employing Density Functional (DFT) and Wave Function Theory (WFT) to model and interpret photoelectron spectra of adsorbed halogenated species on ice surfaces at the core level with the highest accuracy possible. </p><p>We make use of an embedding approach utilizing full quantum mechanics to divide the system into subunits that will be treated at different levels of theory [3].</p><p>The goal is to determine core electron binding energies and the associated chemical shifts for the adsorbed halogenated species such as molecular HCl and the dissociated form Cl- at the surface and within the uppermost bulk layer of the ice respectively [4]. The core energy shifts are compared to the data derived from the XPS spectra [4].</p><p>We show that the use of a fully quantum mechanical embedding method, to treat solute-solvent systems is computationally efficient, yet accurate enough to determine the electronic properties of the solute system (halide ion) as well as the long-range effects of the solvent environment (ice).</p><p>We acknowledge support by the French government through the Program “Investissement d'avenir” through the Labex CaPPA (contract ANR-11-LABX-0005-01) and I-SITE ULNE project OVERSEE (contract ANR-16-IDEX-0004), CPER CLIMIBIO (European Regional Development Fund, Hauts de France council, French Ministry of Higher Education and Research) and French national supercomputing facilities (grants DARI x2016081859 and A0050801859).</p><p> </p>


2015 ◽  
Vol 1131 ◽  
pp. 35-38
Author(s):  
Navaphun Kayunkid ◽  
Annop Chanhom ◽  
Chaloempol Saributr ◽  
Adirek Rangkasikorn ◽  
Jiti Nukeaw

This research is related to growth and characterizations of indium-doped pentacene thin films as a novel hybrid material. Doped films were prepared by thermal co-evaporation under high vacuum. The doping concentration was varied from 0% to 50% by controlling the different deposition rate between these two materials while the total thickness was fixed at 100 nm. The hybrid thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD) and UV-Visible spectroscopy to reveal the physical and optical properties. Moreover, the electrical properties of ITO/indium-doped-pentacene/Al devices i.e. charge mobility and carrier concentration were determined by considering the relationship between current-voltage and capacitance-voltage. AFM results identify that doping of indium into pentacene has an effect on surface properties of doped films i.e. the increase of surface grain size. XRD results indicate that doping of metal into pentacene has an effect on preferential orientation of pentacene’s crystalline domains. UV-Vis spectroscopy results show evolution of absorbance at photon energy higher than 2.7 eV corresponding to absorption from oxide of indium formed in the films. Electrical measurements exhibit higher conductivity in doped films resulting from increment of both charge carrier mobility and carrier concentration. Furthermore, chemical interactions taken place inside the doped films were investigated by x-ray photoelectron spectroscopy (XPS) in order to complete the remaining questions i.e. how do indium atoms interact with the neighbor molecules?, what is the origin of the absorption at E > 2.7 eV? Further results and discussions will be presented in the publication.


2018 ◽  
Vol 115 (25) ◽  
pp. E5642-E5650 ◽  
Author(s):  
Matthias Meier ◽  
Jan Hulva ◽  
Zdeněk Jakub ◽  
Jiří Pavelec ◽  
Martin Setvin ◽  
...  

Determining the structure of water adsorbed on solid surfaces is a notoriously difficult task and pushes the limits of experimental and theoretical techniques. Here, we follow the evolution of water agglomerates on Fe3O4(001); a complex mineral surface relevant in both modern technology and the natural environment. Strong OH–H2O bonds drive the formation of partially dissociated water dimers at low coverage, but a surface reconstruction restricts the density of such species to one per unit cell. The dimers act as an anchor for further water molecules as the coverage increases, leading first to partially dissociated water trimers, and then to a ring-like, hydrogen-bonded network that covers the entire surface. Unraveling this complexity requires the concerted application of several state-of-the-art methods. Quantitative temperature-programmed desorption (TPD) reveals the coverage of stable structures, monochromatic X-ray photoelectron spectroscopy (XPS) shows the extent of partial dissociation, and noncontact atomic force microscopy (AFM) using a CO-functionalized tip provides a direct view of the agglomerate structure. Together, these data provide a stringent test of the minimum-energy configurations determined via a van der Waals density functional theory (DFT)-based genetic search.


2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ming-Kai Chuang ◽  
Fang-Chung Chen ◽  
Chain-Shu Hsu

Metal nanoparticle-decorated graphene oxides are promising materials for use in various optoelectronic applications because of their unique plasmonic properties. In this paper, a simple, environmentally friendly method for the synthesis of gold nanoparticle-decorated graphene oxide that can be used to improve the efficiency of organic photovoltaic devices (OPVs) is reported. Here, the amino acid glycine is employed as an environmentally friendly reducing reagent for the reduction of gold ions in the graphene oxide solutions. Transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-Vis spectroscopy, and Raman spectroscopy are used to characterize the material properties of the resulting nanomaterials. Furthermore, these nanocomposites are employed as the anode buffer layer in OPVs to trigger surface plasmonic resonance, which improved the efficiency of the OPVs. The results indicate that such nanomaterials appear to have great potential for application in OPVs.


2021 ◽  
Author(s):  
Reshma P R ◽  
Anees Pazhedath ◽  
Ganesan Karuppiah ◽  
Arun Prasad ◽  
Sandip Dhara

Abstract Recently emerged transition metal oxide (TMO) based 2D nanostructures are gaining a foothold in advanced applications. Unlike, 2D transition metal dichalchogenides, it is strenuous to obtain high quality thin TMOs due to exotic surface reconstruction during synthesis. Herein, we report the synthesis of bilayer thin 2D-V2O5 nanosheets using chemical exfoliation. Synchrotron X-ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy substantiate the successful formation of bilayer thin 2D-V2O5. Ultraviolet-visible absorption spectra exhibit a thickness dependent blue shift in the optical band gap, signifying the emergence of electronic decoupling. Raman spectroscopy fingerprinting shows a thickness dependent vibrational decoupling of phonon modes. Further, it has been verified by computing the lattice vibrational modes using density functional perturbation theory. In this study, the manifestation of the electronic and vibrational decoupling is used as a novel probe to confirm the successful exfoliation of bilayer 2D-V2O5 from its bulk counterpart.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Anthony Ruth ◽  
Michael Holland ◽  
Angus Rockett ◽  
Erin Sanehira ◽  
Michael Irwin ◽  
...  

Metal halide perovskite materials (MHPs) are a family of next-generation semiconductors that are enabling low-cost, high-performance solar cells and optoelectronic devices. The most-used halogen in MHPs, iodine, can supplement its octet by covalent bonding resulting in atomic charges intermediate to I− and I0. Here, we examine theoretically stabilized defects of iodine using density functional theory (DFT); defect formation enthalpies and iodine Bader charges which illustrate how MHPs adapt to stoichiometry changes. Experimentally, X-ray photoelectron spectroscopy (XPS) is used to identify perovskite defects and their relative binding energies, and validate the predicted chemical environments of iodine defects. Examining MHP samples with excess iodine compared with near stoichiometric samples, we discern additional spectral intensity in the I 3d5/2 XPS data arising from defects, and support the presence of iodine trimers. I 3d5/2 defect peak areas reveal a ratio of 2:1, matching the number of atoms at the ends and middle of the trimer, whereas their binding energies agree with calculated Bader charges. Results suggest the iodine trimer is the preferred structural motif for incorporation of excess iodine into the perovskite lattice. Understanding these easily formed photoactive defects and how to identify their presence is essential for stabilizing MHPs against photodecomposition.


Sign in / Sign up

Export Citation Format

Share Document