scholarly journals A Six-Immune-Related Genes Prognostic Signature for Glioblastoma

Author(s):  
Kate Huang ◽  
Changjun Rao ◽  
Jianglong Lu ◽  
Zhangzhang Zhu ◽  
Chengde Wang ◽  
...  

Abstract Background: Glioblastoma (GBM) multiforme is a common malignant brain tumor with high mortality. It is urgently necessary to develop a new treatment because traditional approaches have reached a bottleneck.Purpose: Here we created an immune-related gene (IRGs)-based prognostic signature to comprehensively define the prognosis of glioblastoma (GBM).Methods: Glioblastoma samples were abstracted from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Omnibus (GEO). We retrieved IRGs from the ImmProt data resource. Univariate Cox analysis was adopted to determine the prognostically remarkable IRGs for individual with GBM. The prognostically optimal IRGs were determined via LASSO regression, and predictive model created. Besides, the association of specific factors with the overall survival (OS) of individuals with GBM was explored via multivariate Cox-regression. Lastly, we constructed a predictive nomogram integrating the independent predictive factors to determine the one-, two-, and three-year OS likelihoods of individuals with GBM. Additionally,gene set enrichment analysis(GSEA) and single sample GSEA(ssGSEA) were performed to understand the correlation between the risk score and immune activity.Results: Overall, 273 IRGs which exhibited differential expression were identified in GBM tumor in contrast with the non-malignant samples. Of these 273 IRGs, only six were remarkably linked to OS of individuals with GBM, which were employed in constructing the predictive signature. The GBM were categorized into either the high-risk GBM group or the low-risk GBM group. There were remarkable differences between the high-risk GBM and the low-risk GBM groups regarding OS. The AUC for predicting one-,two-, and three-year OS in training set was 0.610,0.698 and 0.694.In line with the AUC of validation set was 0.608,0.692 and 0.678.Besides,the results of ssGSEA showed the score of prognostic signature is closely related to immune activity.Conclusion: Herein, a robust predictive model based on IRGs was created to estimate the diversity of OS likelihoods in GBM patients, as well as aid future clinical research.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoping Li ◽  
Jishang Chen ◽  
Qihe Yu ◽  
Hui Huang ◽  
Zhuangsheng Liu ◽  
...  

Background: A surge in newly diagnosed breast cancer has overwhelmed the public health system worldwide. Joint effort had beed made to discover the genetic mechanism of these disease globally. Accumulated research has revealed autophagy may act as a vital part in the pathogenesis of breast cancer.Objective: Aim to construct a prognostic model based on autophagy-related lncRNAs and investigate their potential mechanisms in breast cancer.Methods: The transcriptome data and clinical information of patients with breast cancer were obtained from The Cancer Genome Atlas (TCGA) database. Autophagy-related genes were obtained from the Human Autophagy Database (HADb). Long non-coding RNAs (lncRNAs) related to autophagy were acquired through the Pearson correlation analysis. Univariate Cox regression analysis as well as the least absolute shrinkage and selection operator (LASSO) regression analysis were used to identify autophagy-related lncRNAs with prognostic value. We constructed a risk scoring model to assess the prognostic significance of the autophagy-related lncRNAs signatures. The nomogram was then established based on the risk score and clinical indicators. Through the calibration curve, the concordance index (C-index) and receiver operating characteristic (ROC) curve analysis were evaluated to obtain the model's predictive performance. Subgroup analysis was performed to evaluate the differential ability of the model. Subsequently, gene set enrichment analysis was conducted to investigate the potential functions of these lncRNAs.Results: We attained 1,164 breast cancer samples from the TCGA database and 231 autophagy-related genes from the HAD database. Through correlation analysis, 179 autophagy-related lncRNAs were finally identified. Univariate Cox regression analysis and LASSO regression analysis further screened 18 prognosis-associated lncRNAs. The risk scoring model was constructed to divide patients into high-risk and low-risk groups. It was found that the low-risk group had better overall survival (OS) than those of the high-risk group. Then, the nomogram model including age, tumor stage, TNM stage and risk score was established. The evaluation index (C-index: 0.78, 3-year OS AUC: 0.813 and 5-year OS AUC: 0.785) showed that the nomogram had excellent predictive power. Subgroup analysis showed there were difference in OS between high-risk and low-risk patients in different subgroups (stage I-II, ER positive, Her-2 negative and non-TNBC subgroups; all P < 0.05). According to the results of gene set enrichment analysis, these lncRNAs were involved in the regulation of multicellular organismal macromolecule metabolic process in multicellular organisms, nucleotide excision repair, oxidative phosphorylation, and TGF-β signaling pathway.Conclusions: We identified 18 autophagy-related lncRNAs with prognostic value in breast cancer, which may regulate tumor growth and progression in multiple ways.


2021 ◽  
Author(s):  
Yanjia Hu ◽  
Jing Zhang ◽  
Jing Chen

Abstract Background Hypoxia-related long non-coding RNAs (lncRNAs) have been proven to play a role in multiple cancers and can serve as prognostic markers. Lower-grade gliomas (LGGs) are characterized by large heterogeneity. Methods This study aimed to construct a hypoxia-related lncRNA signature for predicting the prognosis of LGG patients. Transcriptome and clinical data of LGG patients were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). LGG cohort in TCGA was chosen as training set and LGG cohorts in CGGA served as validation sets. A prognostic signature consisting of fourteen hypoxia-related lncRNAs was constructed using univariate and LASSO Cox regression. A risk score formula involving the fourteen lncRNAs was developed to calculate the risk score and patients were classified into high- and low-risk groups based on cutoff. Kaplan-Meier survival analysis was used to compare the survival between two groups. Cox regression analysis was used to determine whether risk score was an independent prognostic factor. A nomogram was then constructed based on independent prognostic factors and assessed by C-index and calibration plot. Gene set enrichment analysis and immune cell infiltration analysis were performed to uncover further mechanisms of this lncRNA signature. Results LGG patients with high risk had poorer prognosis than those with low risk in both training and validation sets. Recipient operating characteristic curves showed good performance of the prognostic signature. Univariate and multivariate Cox regression confirmed that the established lncRNA signature was an independent prognostic factor. C-index and calibration plots showed good predictive performance of nomogram. Gene set enrichment analysis showed that genes in the high-risk group were enriched in apoptosis, cell adhesion, pathways in cancer, hypoxia etc. Immune cells were higher in high-risk group. Conclusion The present study showed the value of the 14-lncRNA signature in predicting survival of LGGs and these 14 lncRNAs could be further investigated to reveal more mechanisms involved in gliomas.


2021 ◽  
Author(s):  
Yong Lv ◽  
ShuGuang Jin ◽  
Bo Xiang

Abstract BackgroundTreatment of neuroblastoma is evolving toward precision medicine. LncRNAs can be used as prognostic biomarkers in many types of cancer.MethodsBased on the RNA-seq data from GSE49710, we built a lncRNAs-based risk score using the least absolute shrinkage and selection operation (LASSO) regression. Cox regression, receiver operating characteristic curves were used to evaluate the association of the LASSO risk score with overall survival. Nomograms were created and then validated in an external cohort from TARGET database. Gene set enrichment analysis was performed to identify the significantly changed biological pathways. ResultsThe 16-lncRNAs-based LASSO risk score was used to separate patients into high-risk and low-risk groups. In GSE49710 cohort, the high-risk group exhibited a poorer OS than those in the low-risk group (P<0.001). Moreover, multivariate Cox regression analysis demonstrated that LASSO risk score was an independent risk factor (HR=6.201;95%CI:2.536-15.16). The similar prognostic powers of the 16-lncRNAs were also achieved in the external cohort and in stratified analysis. In addition, a nomogram was established and worked well both in the internal validation cohort (C-index=0.831) and external validation cohort (C-index=0.773). The calibration plot indicated the good clinical utility of the nomogram. Gene set enrichment analysis (GSEA) indicated that high-risk group was related with cancer recurrence, metastasis and inflammatory associated pathways.ConclusionThe lncRNA-based LASSO risk score is a promising and potential prognostic tool in predicting the survival of patients with neuroblastoma. The nomogram combined the lncRNAs and clinical parameters allows for accurate risk assessment in guiding clinical management.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Fu ◽  
Xindong Wei ◽  
Qiuqin Han ◽  
Jiamei Le ◽  
Yujie Ma ◽  
...  

Abstract Background Early recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are deeply involved in HCC prognosis. In this study, we aimed to establish a prognostic lncRNA signature for HCC early recurrence. Methods The lncRNA expression profile and corresponding clinical data were retrieved from total 299 HCC patients in TCGA database. LncRNA candidates correlated to early recurrence were selected by differentially expressed gene (DEG), univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. A 25-lncRNA prognostic signature was constructed according to receiver operating characteristic curve (ROC). Kaplan-Meier and multivariate Cox regression analyses were used to evaluate the performance of this signature. ROC and nomogram were used to evaluate the integrated models based on this signature with other independent clinical risk factors. Gene set enrichment analysis (GSEA) was used to reveal enriched gene sets in the high-risk group. Tumor infiltrating lymphocytes (TILs) levels were analyzed with single sample Gene Set Enrichment Analysis (ssGSEA). Immune therapy response prediction was performed with TIDE and SubMap. Chemotherapeutic response prediction was conducted by using Genomics of Drug Sensitivity in Cancer (GDSC) pharmacogenomics database. Results Compared to low-risk group, patients in high-risk group showed reduced disease-free survival (DFS) in the training (p < 0.0001) and validation cohort (p = 0.0132). The 25-lncRNA signature, AFP, TNM and vascular invasion could serve as independent risk factors for HCC early recurrence. Among them, the 25-lncRNA signature had the best predictive performance, and combination of those four risk factors further improves the prognostic potential. Moreover, GSEA showed significant enrichment of “E2F TARGETS”, “G2M CHECKPOINT”, “MYC TARGETS V1” and “DNA REPAIR” pathways in the high-risk group. In addition, increased TILs were observed in the low-risk group compared to the high-risk group. The 25-lncRNA signature negatively associates with the levels of some types of antitumor immune cells. Immunotherapies and chemotherapies prediction revealed differential responses to PD-1 inhibitor and several chemotherapeutic drugs in the low- and high-risk group. Conclusions Our study proposed a 25-lncRNA prognostic signature for predicting HCC early recurrence, which may guide postoperative treatment and recurrence surveillance in HCC patients.


2021 ◽  
Author(s):  
Yiqun Jin ◽  
Bai. Xue-song

Abstract PurposePyroptosis is an inflammatory form of cell death associated with tumorigenesis and progression. However, the prognostic value of pyroptosis-related genes (PRGs) in hepatocellular carcinoma (HCC) have not been elucidated.MethodsWe downloaded mRNA expression profiles and clinical information from TCGA and ICGC database. Then, differently expressed PRGs were screened to construct a multigene prognostic signature by least absolute contraction and selection operator (LASSO) Cox regression method in TCGA cohort. Date from ICGC was used to validate the robustness of this signature. Kaplan-Meier analysis was used to compare overall survival (OS) between high- and low-risk group. Univariate and multivariate Cox analysis were performed to identify the independent prognostic value of the signature. Gene set enrichment analysis (GSEA) was utilized to conduct GO and KEGG analysis. Single-sample gene set enrichment analysis was implemented to assess the immune cell infiltration and immune-related function. TIDE algorithm evaluated the significance of this signature in predicting immunotherapeutic sensitivity. ResultsAn 8-PRGs prognostic model was established. The OS of low-risk group was significantly increased compared to high-risk group. Receiver operating characteristic curve showed the model had a good prognostic predictive accuracy. Cox regression analysis proved the model an independent predictor for OS in HCC. GSEA indicated that the risk score was associated with immune response. Furthermore, different subgroups exhibited different immunoinfiltration patterns, different immune-checkpoint levels and different potential responses for immune-checkpoint blockade therapy.ConclusionAn 8-PRGs signature can predict the prognosis of HCC patients and may act as an immunotherapeutic potential target for HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhijie Xu ◽  
Bi Peng ◽  
Qiuju Liang ◽  
Xi Chen ◽  
Yuan Cai ◽  
...  

Ferroptosis is an iron-dependent cell death process that plays important regulatory roles in the occurrence and development of cancers, including hepatocellular carcinoma (HCC). Moreover, the molecular events surrounding aberrantly expressed long non-coding RNAs (lncRNAs) that drive HCC initiation and progression have attracted increasing attention. However, research on ferroptosis-related lncRNA prognostic signature in patients with HCC is still lacking. In this study, the association between differentially expressed lncRNAs and ferroptosis-related genes, in 374 HCC and 50 normal hepatic samples obtained from The Cancer Genome Atlas (TCGA), was evaluated using Pearson’s test, thereby identifying 24 ferroptosis-related differentially expressed lncRNAs. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression model were used to construct and validate a prognostic risk score model from both TCGA training dataset and GEO testing dataset (GSE40144). A nine-lncRNA-based signature (CTD-2033A16.3, CTD-2116N20.1, CTD-2510F5.4, DDX11-AS1, LINC00942, LINC01224, LINC01231, LINC01508, and ZFPM2-AS1) was identified as the ferroptosis-related prognostic model for HCC, independent of multiple clinicopathological parameters. In addition, the HCC patients were divided into high-risk and low-risk groups according to the nine-lncRNA prognostic signature. The gene set enrichment analysis enrichment analysis revealed that the lncRNA-based signature might regulate the HCC immune microenvironment by interfering with tumor necrosis factor α/nuclear factor kappa-B, interleukin 2/signal transducers and activators of transcription 5, and cytokine/cytokine receptor signaling pathways. The infiltrating immune cell subtypes, such as resting memory CD4(+) T cells, follicular helper T cells, regulatory T cells, and M0 macrophages, were all significantly different between the high-risk group and the low-risk group as indicated in Spearman’s correlation analysis. Moreover, a substantial increase in the expression of B7H3 immune checkpoint molecule was found in the high-risk group. Our findings provided a promising insight into ferroptosis-related lncRNAs in HCC and a personalized prediction tool for prognosis and immune responses in patients.


Author(s):  
Wei Jiang ◽  
Jiameng Xu ◽  
Zirui Liao ◽  
Guangbin Li ◽  
Chengpeng Zhang ◽  
...  

ObjectiveTo screen lung adenocarcinoma (LUAC)-specific cell-cycle-related genes (CCRGs) and develop a prognostic signature for patients with LUAC.MethodsThe GSE68465, GSE42127, and GSE30219 data sets were downloaded from the GEO database. Single-sample gene set enrichment analysis was used to calculate the cell cycle enrichment of each sample in GSE68465 to identify CCRGs in LUAC. The differential CCRGs compared with LUAC data from The Cancer Genome Atlas were determined. The genetic data from GSE68465 were divided into an internal training group and a test group at a ratio of 1:1, and GSE42127 and GSE30219 were defined as external test groups. In addition, we combined LASSO (least absolute shrinkage and selection operator) and Cox regression analysis with the clinical information of the internal training group to construct a CCRG risk scoring model. Samples were divided into high- and low-risk groups according to the resulting risk values, and internal and external test sets were used to prove the validity of the signature. A nomogram evaluation model was used to predict prognosis. The CPTAC and HPA databases were chosen to verify the protein expression of CCRGs.ResultsWe identified 10 LUAC-specific CCRGs (PKMYT1, ETF1, ECT2, BUB1B, RECQL4, TFRC, COCH, TUBB2B, PITX1, and CDC6) and constructed a model using the internal training group. Based on this model, LUAC patients were divided into high- and low-risk groups for further validation. Time-dependent receiver operating characteristic and Cox regression analyses suggested that the signature could precisely predict the prognosis of LUAC patients. Results obtained with CPTAC, HPA, and IHC supported significant dysregulation of these CCRGs in LUAC tissues.ConclusionThis prognostic prediction signature based on CCRGs could help to evaluate the prognosis of LUAC patients. The 10 LUAC-specific CCRGs could be used as prognostic markers of LUAC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dongjie Chen ◽  
Hui Huang ◽  
Longjun Zang ◽  
Wenzhe Gao ◽  
Hongwei Zhu ◽  
...  

We aim to construct a hypoxia- and immune-associated risk score model to predict the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). By unsupervised consensus clustering algorithms, we generate two different hypoxia clusters. Then, we screened out 682 hypoxia-associated and 528 immune-associated PDAC differentially expressed genes (DEGs) of PDAC using Pearson correlation analysis based on the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression project (GTEx) dataset. Seven hypoxia and immune-associated signature genes (S100A16, PPP3CA, SEMA3C, PLAU, IL18, GDF11, and NR0B1) were identified to construct a risk score model using the Univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression, which stratified patients into high- and low-risk groups and were further validated in the GEO and ICGC cohort. Patients in the low-risk group showed superior overall survival (OS) to their high-risk counterparts (p &lt; 0.05). Moreover, it was suggested by multivariate Cox regression that our constructed hypoxia-associated and immune-associated prognosis signature might be used as the independent factor for prognosis prediction (p &lt; 0.001). By CIBERSORT and ESTIMATE algorithms, we discovered that patients in high-risk groups had lower immune score, stromal score, and immune checkpoint expression such as PD-L1, and different immunocyte infiltration states compared with those low-risk patients. The mutation spectrum also differs between high- and low-risk groups. To sum up, our hypoxia- and immune-associated prognostic signature can be used as an approach to stratify the risk of PDAC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guomin Wu ◽  
Qihao Wang ◽  
Ting Zhu ◽  
Linhai Fu ◽  
Zhupeng Li ◽  
...  

This study aimed to establish a prognostic risk model for lung adenocarcinoma (LUAD). We firstly divided 535 LUAD samples in TCGA-LUAD into high-, medium-, and low-immune infiltration groups by consensus clustering analysis according to immunological competence assessment by single-sample gene set enrichment analysis (ssGSEA). Profile of long non-coding RNAs (lncRNAs) in normal samples and LUAD samples in TCGA was used for a differential expression analysis in the high- and low-immune infiltration groups. A total of 1,570 immune-related differential lncRNAs in LUAD were obtained by intersecting the above results. Afterward, univariate COX regression analysis and multivariate stepwise COX regression analysis were conducted to screen prognosis-related lncRNAs, and an eight-immune-related-lncRNA prognostic signature was finally acquired (AL365181.2, AC012213.4, DRAIC, MRGPRG-AS1, AP002478.1, AC092168.2, FAM30A, and LINC02412). Kaplan–Meier analysis and ROC analysis indicated that the eight-lncRNA-based model was accurate to predict the prognosis of LUAD patients. Simultaneously, univariate COX regression analysis and multivariate COX regression analysis were undertaken on clinical features and risk scores. It was illustrated that the risk score was a prognostic factor independent from clinical features. Moreover, immune data of LUAD in the TIMER database were analyzed. The eight-immune-related-lncRNA prognostic signature was related to the infiltration of B cells, CD4+ T cells, and dendritic cells. GSEA enrichment analysis revealed significant differences in high- and low-risk groups in pathways like pentose phosphate pathway, ubiquitin mediated proteolysis, and P53 signaling pathway. This study helps to treat LUAD patients and explore molecules related to LUAD immune infiltration to deeply understand the specific mechanism.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8128 ◽  
Author(s):  
Cheng Yue ◽  
Hongtao Ma ◽  
Yubai Zhou

Background Lung cancer has the highest morbidity and mortality worldwide, and lung adenocarcinoma (LADC) is the most common pathological subtype. Accumulating evidence suggests the tumor microenvironment (TME) is correlated with the tumor progress and the patient’s outcome. As the major components of TME, the tumor-infiltrated immune cells and stromal cells have attracted more and more attention. In this study, differentially expressed immune and stromal signature genes were used to construct a TME-related prognostic model for predicting the outcomes of LADC patients. Methods The expression profiles of LADC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) related to the TME of LADC were identified using TCGA dataset by Wilcoxon rank sum test. The prognostic effects of TME-related DEGs were analyzed using univariate Cox regression. Then, the least absolute shrinkage and selection operator (LASSO) regression was performed to reduce the overfit and the number of genes for further analysis. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and GEO datasets, respectively. The Kyoto Encyclopedia of Genes and Genomes analysis of gene signature was performed using Gene Set Enrichment Analysis (GSEA). Finally, the overall immune status, tumor purity and the expression profiles of HLA genes of high- and low-risk samples was further analyzed to reveal the potential mechanisms of prognostic effects of the model. Results A total of 93 TME-related DEGs were identified, of which 23 DEGs were up-regulated and 70 DEGs were down-regulated. The univariate cox analysis indicated that 23 DEGs has the prognostic effects, the hazard ratio ranged from 0.65 to 1.25 (p < 0.05). Then, seven genes were screened out from the 23 DEGs by LASSO regression method and were further analyzed by step multivariate Cox regression. Finally, a three-gene (ADAM12, Bruton Tyrosine Kinase (BTK), ERG) signature was constructed, and ADAM12, BTK can be used as independent prognostic factors. The three-gene signature well stratified the LADC patients in both training (TCGA) and testing (GEO) datasets as high-risk and low-risk groups, the 3-year area under curve (AUC) of ROC curves of three GEO sets were 0.718 (GSE3141), 0.646 (GSE30219) and 0.643 (GSE50081). The GSEA analysis indicated that highly expressed ADAM12, BTK, ERG mainly correlated with the activation of pathways involving in focal adhesion, immune regulation. The immune analysis indicated that the low-risk group has more immune activities and higher expression of HLA genes than that of the high-risk group. In sum, we identified and constructed a three TME-related DEGs signature, which could be used to predict the prognosis of LADC patients.


Sign in / Sign up

Export Citation Format

Share Document