scholarly journals Development and Verification of the Hypoxia- and Immune-Associated Prognostic Signature for Pancreatic Ductal Adenocarcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Dongjie Chen ◽  
Hui Huang ◽  
Longjun Zang ◽  
Wenzhe Gao ◽  
Hongwei Zhu ◽  
...  

We aim to construct a hypoxia- and immune-associated risk score model to predict the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). By unsupervised consensus clustering algorithms, we generate two different hypoxia clusters. Then, we screened out 682 hypoxia-associated and 528 immune-associated PDAC differentially expressed genes (DEGs) of PDAC using Pearson correlation analysis based on the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression project (GTEx) dataset. Seven hypoxia and immune-associated signature genes (S100A16, PPP3CA, SEMA3C, PLAU, IL18, GDF11, and NR0B1) were identified to construct a risk score model using the Univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression, which stratified patients into high- and low-risk groups and were further validated in the GEO and ICGC cohort. Patients in the low-risk group showed superior overall survival (OS) to their high-risk counterparts (p < 0.05). Moreover, it was suggested by multivariate Cox regression that our constructed hypoxia-associated and immune-associated prognosis signature might be used as the independent factor for prognosis prediction (p < 0.001). By CIBERSORT and ESTIMATE algorithms, we discovered that patients in high-risk groups had lower immune score, stromal score, and immune checkpoint expression such as PD-L1, and different immunocyte infiltration states compared with those low-risk patients. The mutation spectrum also differs between high- and low-risk groups. To sum up, our hypoxia- and immune-associated prognostic signature can be used as an approach to stratify the risk of PDAC.

Author(s):  
Xiang Fei ◽  
Congli Hu ◽  
Xinyu Wang ◽  
Chaojing Lu ◽  
Hezhong Chen ◽  
...  

Ferroptosis-related genes play an important role in the progression of lung adenocarcinoma (LUAD). However, the potential function of ferroptosis-related lncRNAs in LUAD has not been fully elucidated. Thus, to explore the potential role of ferroptosis-related lncRNAs in LUAD, the transcriptome RNA-seq data and corresponding clinical data of LUAD were downloaded from the TCGA dataset. Pearson correlation was used to mine ferroptosis-related lncRNAs. Differential expression and univariate Cox analysis were performed to screen prognosis related lncRNAs. A ferroptosis-related lncRNA prognostic signature (FLPS), which included six ferroptosis-related lncRNAs, was constructed by the least absolute shrinkage and selection operator (LASSO) Cox regression. Patients were divided into a high risk-score group and low risk-score group by the median risk score. Receiver operating characteristic (ROC) curves, principal component analysis (PCA), and univariate and multivariate Cox regression were performed to confirm the validity of FLPS. Enrichment analysis showed that the biological processes, pathways and markers associated with malignant tumors were more common in high-risk subgroups. There were significant differences in immune microenvironment and immune cells between high- and low-risk groups. Then, a nomogram was constructed. We further investigated the relationship between six ferroptosis-related lncRNAs and tumor microenvironment and tumor stemness. A competing endogenous RNA (ceRNA) network was established based on the six ferroptosis-related lncRNAs. Finally, we detected the expression levels of ferroptosis-related lncRNAs in clinical samples through quantitative real-time polymerase chain reaction assay (qRT-PCR). In conclusion, we identified the prognostic ferroptosis-related lncRNAs in LUAD and constructed a prognostic signature which provided a new strategy for the evaluation and prediction of prognosis in LUAD.


2020 ◽  
Author(s):  
Jianfeng Zheng ◽  
Jinyi Tong ◽  
Benben Cao ◽  
Xia Zhang ◽  
Zheng Niu

Abstract Background: Cervical cancer (CC) is a common gynecological malignancy for which prognostic and therapeutic biomarkers are urgently needed. The signature based on immune‐related lncRNAs(IRLs) of CC has never been reported. This study aimed to establish an IRL signature for patients with CC.Methods: The RNA-seq dataset was obtained from the TCGA, GEO, and GTEx database. The immune scores(IS)based on single-sample gene set enrichment analysis (ssGSEA) were calculated to identify the IRLs, which were then analyzed using univariate Cox regression analysis to identify significant prognostic IRLs. A risk score model was established to divide patients into low-risk and high-risk groups based on the median risk score of these IRLs. This was then validated by splitting TCGA dataset(n=304) into a training-set(n=152) and a valid-set(n=152). The fraction of 22 immune cell subpopulations was evaluated in each sample to identify the differences between low-risk and high-risk groups. Additionally, a ceRNA network associated with the IRLs was constructed.Results: A cohort of 326 CC and 21 normal tissue samples with corresponding clinical information was included in this study. Twenty-eight IRLs were collected according to the Pearson’s correlation analysis between immune score and lncRNA expression (P < 0.01). Four IRLs (BZRAP1-AS1, EMX2OS, ZNF667-AS1, and CTC-429P9.1) with the most significant prognostic values (P < 0.05) were identified which demonstrated an ability to stratify patients into low-risk and high-risk groups by developing a risk score model. It was observed that patients in the low‐risk group showed longer overall survival (OS) than those in the high‐risk group in the training-set, valid-set, and total-set. The area under the curve (AUC) of the receiver operating characteristic curve (ROC curve) for the four IRLs signature in predicting the one-, two-, and three-year survival rates were larger than 0.65. In addition, the low-risk and high-risk groups displayed different immune statuses in GSEA. These IRLs were also significantly correlated with immune cell infiltration. Conclusions: Our results showed that the IRL signature had a prognostic value for CC. Meanwhile, the specific mechanisms of the four-IRLs in the development of CC were ascertained preliminarily.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pu Wu ◽  
Jinyuan Shi ◽  
Wei Sun ◽  
Hao Zhang

Abstract Background Pyroptosis is a form of programmed cell death triggered by inflammasomes. However, the roles of pyroptosis-related genes in thyroid cancer (THCA) remain still unclear. Objective This study aimed to construct a pyroptosis-related signature that could effectively predict THCA prognosis and survival. Methods A LASSO Cox regression analysis was performed to build a prognostic model based on the expression profile of each pyroptosis-related gene. The predictive value of the prognostic model was validated in the internal cohort. Results A pyroptosis-related signature consisting of four genes was constructed to predict THCA prognosis and all patients were classified into high- and low-risk groups. Patients with a high-risk score had a poorer overall survival (OS) than those in the low-risk group. The area under the curve (AUC) of the receiver operator characteristic (ROC) curves assessed and verified the predictive performance of this signature. Multivariate analysis showed the risk score was an independent prognostic factor. Tumor immune cell infiltration and immune status were significantly higher in low-risk groups, which indicated a better response to immune checkpoint inhibitors (ICIs). Of the four pyroptosis-related genes in the prognostic signature, qRT-PCR detected three of them with significantly differential expression in THCA tissues. Conclusion In summary, our pyroptosis-related risk signature may have an effective predictive and prognostic capability in THCA. Our results provide a potential foundation for future studies of the relationship between pyroptosis and the immunotherapy response.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoxia Tong ◽  
Xiaofei Qu ◽  
Mengyun Wang

BackgroundCutaneous melanoma (CM) is one of the most aggressive cancers with highly metastatic ability. To make things worse, there are limited effective therapies to treat advanced CM. Our study aimed to investigate new biomarkers for CM prognosis and establish a novel risk score system in CM.MethodsGene expression data of CM from Gene Expression Omnibus (GEO) datasets were downloaded and analyzed to identify differentially expressed genes (DEGs). The overlapped DEGs were then verified for prognosis analysis by univariate and multivariate COX regression in The Cancer Genome Atlas (TCGA) datasets. Based on the gene signature of multiple survival associated DEGs, a risk score model was established, and its prognostic and predictive role was estimated through Kaplan-Meier (K-M) analysis and log-rank test. Furthermore, the correlations between prognosis related genes expression and immune infiltrates were analyzed via Tumor Immune Estimation Resource (TIMER) site.ResultsA total of 103 DEGs were obtained based on GEO cohorts, and four genes were verified in TCGA datasets. Subsequently, four genes (ADAMDEC1, GNLY, HSPA13, and TRIM29) model was developed by univariate and multivariate Cox regression analyses. The K-M plots showed that the high-risk group was associated with shortened survival than that in the low-risk group (P &lt; 0.0001). Multivariate analysis suggested that the model was an independent prognostic factor (high-risk vs. low-risk, HR= 2.06, P &lt; 0.001). Meanwhile, the high-risk group was prone to have larger breslow depth (P&lt; 0.001) and ulceration (P&lt; 0.001).ConclusionsThe four-gene risk score model functions well in predicting the prognosis and treatment response in CM and will be useful for guiding therapeutic strategies for CM patients. Additional clinical trials are needed to verify our findings.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenchang Lv ◽  
Yichen Wang ◽  
Chongru Zhao ◽  
Yufang Tan ◽  
Mingchen Xiong ◽  
...  

The metastasis and poor prognosis are still regarded as the main challenge in the clinical treatment of breast cancer (BC). Both N6-methyladenosine (m6A) modification and lncRNAs play vital roles in the carcinogenesis and evolvement of BC. Considering the unknown association of m6A and lncRNAs in BC, this study therefore aims to discern m6A-related lncRNAs and explore their prognostic value in BC patients. Firstly, a total of 6 m6A-related lncRNAs were screened from TCGA database and accordingly constructed a prognostic-predicting model. The BC patients were then divided into high-risk and low-risk groups dependent on the median cutoff of risk score based on this model. Then, the predictive value of this model was validated by the analyses of cox regression, Kaplan-Meier curve, ROC curve, and the biological differences in the two groups were validated by PCA, KEGG, GSEA, immune status as well as in vitro assay. Finally, we accordingly constructed a risk prognostic model based on the 6 identified m6A-related lncRNAs, including Z68871.1, AL122010.1, OTUD6B-AS1, AC090948.3, AL138724.1, EGOT. Interestingly, the BC patients were divided into the low-risk and high-risk groups with different prognoses according to the risk score. Notably, the risk score of the model was an excellent independent prognostic factor. In the clinical sample validation, m6A regulatory proteins were differentially expressed in patients with different risks, and the markers of tumor-associated macrophages and m6A regulators were co-localized in high-risk BC tissues. This well-validated risk assessment tool based on the repertoire of these m6A-related genes and m6A-related lncRNAs, is of highly prognosis-predicting ability, and might provide a supplemental screening method for precisely judging BC prognosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Junyu Huo ◽  
Liqun Wu ◽  
Yunjin Zang

Background. An increasing number of reports have found that immune-related genes (IRGs) have a significant impact on the prognosis of a variety of cancers, but the prognostic value of IRGs in gastric cancer (GC) has not been fully elucidated. Methods. Univariate Cox regression analysis was adopted for the identification of prognostic IRGs in three independent cohorts (GSE62254, n = 300 ; GSE15459, n = 191 ; and GSE26901, n = 109 ). After obtaining the intersecting prognostic genes, the three independent cohorts were merged into a training cohort ( n = 600 ) to establish a prognostic model. The risk score was determined using multivariate Cox and LASSO regression analyses. Patients were classified into low-risk and high-risk groups according to the median risk score. The risk score performance was validated externally in the three independent cohorts (GSE26253, n = 432 ; GSE84437, n = 431 ; and TCGA, n = 336 ). Immune cell infiltration (ICI) was quantified by the CIBERSORT method. Results. A risk score comprising nine genes showed high accuracy for the prediction of the overall survival (OS) of patients with GC in the training cohort ( AUC > 0.7 ). The risk of death was found to have a positive correlation with the risk score. The univariate and multivariate Cox regression analyses revealed that the risk score was an independent indicator of the prognosis of patients with GC ( p < 0.001 ). External validation confirmed the universal applicability of the risk score. The low-risk group presented a lower infiltration level of M2 macrophages than the high-risk group ( p < 0.001 ), and the prognosis of patients with GC with a higher infiltration level of M2 macrophages was poor ( p = 0.011 ). According to clinical correlation analysis, compared with patients with the diffuse and mixed type of GC, those with the Lauren classification intestinal GC type had a significantly lower risk score ( p = 0.00085 ). The patients’ risk score increased with the progression of the clinicopathological stage. Conclusion. In this study, we constructed and validated a robust prognostic signature for GC, which may help improve the prognostic assessment system and treatment strategy for GC.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaotao Jiang ◽  
Qiaofeng Yan ◽  
Linling Xie ◽  
Shijie Xu ◽  
Kailin Jiang ◽  
...  

Background. Gastric cancer (GC), an extremely aggressive tumor with a very different prognosis, is the third leading cause of cancer-related mortality. We aimed to construct a ferroptosis-related prognostic model that can be distinguished prognostically. Methods. The gene expression and the clinical data of GC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database (GEO). The ferroptosis-related genes were obtained from the FerrDb. Using the “limma” R package and univariate Cox analysis, ferroptosis-related genes with differential expression and prognostic value were identified in the TCGA cohort. Last absolute shrinkage and selection operator (LASSO) Cox regression was applied to shrink ferroptosis-related predictors and construct a prognostic model. Functional enrichment, ESTIMATE algorithm, and single-sample gene set enrichment analysis (ssGSEA) were applied for exploring the potential mechanism. GC patients from the GEO cohort were used for validation. Results. An 8-gene prognostic model was constructed and stratified GC patients from TCGA and meta-GEO cohort into high-risk groups or low-risk groups. GC patients in high-risk groups have significantly poorer OS compared with those in low-risk groups. The risk score was identified as an independent predictor for OS. Functional analysis revealed that the risk score was mainly associated with the biological function of extracellular matrix (ECM) organization and tumor immunity. Conclusion. In conclusion, the ferroptosis-related model can be utilized for the clinical prognostic prediction in GC.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11074
Author(s):  
Jin Duan ◽  
Youming Lei ◽  
Guoli Lv ◽  
Yinqiang Liu ◽  
Wei Zhao ◽  
...  

Background Lung adenocarcinoma (LUAD) is the most commonhistological lung cancer subtype, with an overall five-year survivalrate of only 17%. In this study, we aimed to identify autophagy-related genes (ARGs) and develop an LUAD prognostic signature. Methods In this study, we obtained ARGs from three databases and downloaded gene expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We used TCGA-LUAD (n = 490) for a training and testing dataset, and GSE50081 (n = 127) as the external validation dataset.The least absolute shrinkage and selection operator (LASSO) Cox and multivariate Cox regression models were used to generate an autophagy-related signature. We performed gene set enrichment analysis (GSEA) and immune cell analysis between the high- and low-risk groups. A nomogram was built to guide the individual treatment for LUAD patients. Results We identified a total of 83 differentially expressed ARGs (DEARGs) from the TCGA-LUAD dataset, including 33 upregulated DEARGs and 50 downregulated DEARGs, both with thresholds of adjusted P < 0.05 and |Fold change| > 1.5. Using LASSO and multivariate Cox regression analyses, we identified 10 ARGs that we used to build a prognostic signature with areas under the curve (AUCs) of 0.705, 0.715, and 0.778 at 1, 3, and 5 years, respectively. Using the risk score formula, the LUAD patients were divided into low- or high-risk groups. Our GSEA results suggested that the low-risk group were enriched in metabolism and immune-related pathways, while the high-risk group was involved in tumorigenesis and tumor progression pathways. Immune cell analysis revealed that, when compared to the high-risk group, the low-risk group had a lower cell fraction of M0- and M1- macrophages, and higher CD4 and PD-L1 expression levels. Conclusion Our identified robust signature may provide novel insight into underlying autophagy mechanisms as well as therapeutic strategies for LUAD treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhijun Xiao ◽  
Jinyin Li ◽  
Qian Yu ◽  
Ting Zhou ◽  
Jingjing Duan ◽  
...  

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with an extremely low 5-year survival rate. Accumulating evidence has unveiled that inflammatory response promotes tumor progression, enhances angiogenesis, and causes local immunosuppression. Herein, we aim to develop an inflammatory related prognostic signature, and found it could be used to predict gemcitabine response in PDAC.Methods: PDAC cohorts with mRNA expression profiles and clinical information were systematically collected from the four public databases. An inflammatory response related genes (IRRGs) prognostic signature was constructed by LASSO regression analysis. Kaplan–Meier survival analysis, receiver operating characteristic analysis, principal component analysis, and univariate and multivariate Cox analyses were carried out to evaluate effectiveness, and reliability of the signature. The correlation between gemcitabine response and risk score was evaluated in the TCGA-PAAD cohort. The GDSC database, pRRophetic algorithm, and connectivity map analysis were used to predict gemcitabine sensitivity and identify potential drugs for the treatment of PDAC. Finally, we analyzed differences in frequencies of gene mutations, infiltration of immune cells, as well as biological functions between different subgroups divided by the prognostic signature.Results: We established a seven IRRGs (ADM, DCBLD2, EREG, ITGA5, MIF, TREM1, and BTG2) signature which divided the PDAC patients into low- and high-risk groups. Prognostic value of the signature was validated in 11 PDAC cohorts consisting of 1337 PDAC patients from 6 countries. A nomogram that integrated the IRRGs signature and clinicopathologic factors of PDAC patients was constructed. The risk score showed positive correlation with gemcitabine resistance. Two drugs (BMS-536924 and dasatinib) might have potential therapeutic implications in high-risk PDAC patients. We found that the high-risk group had higher frequencies of KRAS, TP53, and CDKN2A mutations, increased infiltration of macrophages M0, neutrophils, and macrophages M2 cells, as well as upregulated hypoxia and glycolysis pathways, while the low-risk group had increased infiltration of CD8+ T, naïve B, and plasma and macrophages M1 cells.Conclusion: We constructed and validated an IRRGs signature that could be used to predict the prognosis and gemcitabine response of patients with PDAC, as well as two drugs (BMS-536924 and dasatinib) may contribute to PDAC treatment.


2021 ◽  
Author(s):  
Rongchang Zhao ◽  
Dan Ding ◽  
Yan Ding ◽  
Rongbo Han ◽  
Xiujuan Wang ◽  
...  

Abstract Background Multiple factors affect the survival time of patients with lung adenocarcinoma (LUAD). Specifically, the therapeutic effect of medicines and the disease recurrence probability differs among patients with the same stage of LUAD. Thus, effective prognostic predictors need to be identified. Methods Based on the tumor mutation burden (TMB) data obtained by TCGA, LUAD was divided into high and low groups, and the differentially expressed glycolysis-related genes between the two groups were screened out. Cox regression was used to obtain a prognostic model. A receiver operating characteristic (ROC) curve and calibration curve were generated to evaluate the nomogram that was constructed based on clinicopathological characteristics and the risk score. Two datasets (GSE68465 and GSE11969) from Gene Expression Omnibus (GEO) were used to verify the prognostic performance of the gene. Furthermore, differences in immune cell distribution, immune-related molecules and drug susceptibility were assessed for their relationship with the risk score. Results We confirmed a 5-gene signature (FKBP4, HMMR, B4GALT1, ERO1L, ENO1) capable of dividing patients into two risk groups. There was a significant difference in overall survival (OS) times between the high-risk group and the low-risk group (P = 1.085e-4), with the low-risk group having a better survival outcome. Through multivariate Cox analysis, the risk score was confirmed to be an independent prognostic factor (HR = 1.289, 95% CI = 1.202-1.383, P < 0.001), and the ROC curve and nomogram exhibited accurate prediction performance. Validation of the data obtained in the GEO database yielded similar results. Additionally, there were significant differences in cisplatin, paclitaxel, gemcitabine, docetaxel, gefitiniband erlotinib sensitivity between the low-risk and high-risk groups. Conclusions Our results reveal that glycolysis-related gene are feasible predictors of LUAD patient survival and response to therapeutics.


Sign in / Sign up

Export Citation Format

Share Document