scholarly journals Photophysical Approach of Biological Active Benzofuran Derivatized Pyrrole with Green Synthesized Silver NPs Using C. Roseus Leaves: Computational and Spectroscopic Study

Author(s):  
Shivaprasadagouda Patil ◽  
Mahanthesh M. Basanagouda ◽  
Sudhir M. Hiremath ◽  
Aishwarya Nadgir ◽  
Malatesh S Pujar ◽  
...  

Abstract The electronic absorption and fluorescence emission spectra of N-(2,5-dimethyl-pyrrol-1-yl)-2-(5-methoxybenzofuran-3-yl)acetamide (DPMA) molecule were recorded in various solvents at room temperature with the aim of estimation of ground state (\({\mu }_{g}\)) and excited states (\({\mu }_{e}\)) dipole moments using Lippert’s, Bakshiev’s and Kawski-Chamma-Viallete’s equations. The results were signified that, the excited state dipole moment is greater than the ground state dipole moment, which indicates the excited state dipole moment is more polar than the ground state dipole moment. Ecofriendly green synthesis of silver nanoparticles (Ag NPs) were synthesized using catharanthus roseus (C.R) leaf extract was done. These synthesized Ag NPs were used as fluorescence quenchers. Fluorescence lifetime measurement is carried out using time correlated single photon counting technique of DPMA molecule with various concentrations of Ag NPs. A linear Stern-Volmer (S-V) plot was obtained in steady state and transient state method. Furthermore we have estimated computational calculations such as ground state optimized geometry, molecular electrostatic potential (MEP), highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), experimental and theoretical energy band gap, solvent polarity and normalized solvent polarity values. Morphology and sizes of green synthesized silver NPs were characterized by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX) and also characterized by UV-Visible absorption.

2017 ◽  
Vol 13 (1) ◽  
pp. 101-117
Author(s):  
Thipperudrappa J

The solvent effect on absorption and fluorescence spectra of      a ketocyanine      dye 2,5-di[(E)-1-(4- dipropylaminophenyl)     methylidine]-1-cyclopentanone (2,5-DPAPMC) is analysed using Lippert-Mataga bulk polarity function, Reichardt’s microscopic solvent polarity parameter and Kamlet’s multipl e linear regression approach. The spectral properties better follows Reichardt’s microscopic solvent polarity parameter than Lippert-Mataga bulk polarity parameter. This indicates the presence of both general solute – solvent interactions and specific   interactions.   Kamlet’s multiple linear regression   approach indicates the major role of polarizability/dipolarity solvent influence than HBD and HBA. The spectral data in different solvents is used to estimate excited state dipole moment using theoretically determined ground state dipole moment. The excited state dipole moment of dye is found to be larger than its corresponding ground state dipole moment and, ground and excited state dipole moments are not parallel, but subtends an angle of 29 o .


2020 ◽  
Vol 128 (12) ◽  
pp. 1864
Author(s):  
S. Joshi

Photophysical properties of a supramolecular amphiphile of calix[4]arene having benzofurazan moiety at the lower rim, L has been studied. Electronic absorption and fluorescence spectra of L have been recorded in wide range of solvents of different polarities and data were used to study solvatochromic properties. The ground state and the excited state dipole moment of L were estimated from the Bakhshiev's and Bilot-Kawaski's equations. High value of dipole moment is observed for excited state as compared to ground state value and this is attributed to more polar excited state of molecule. Also, fluorescence emission peak undergoes a bathochromic shift with increase in the polarity of the solvent, confirming π-> π* transition. Scanning electron microscopy reveals that the aggregation of L is increased on going from the polar to non polar solvents. Keywords: solvatochromism, benzofurazan, dipole moment, quantum yield, absorption, fluoresence.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Parisa Mohammad-Jafarieh ◽  
Abolfazl Akbarzadeh ◽  
Rahman Salamat-Ahangari ◽  
Mohammad Pourhassan-Moghaddam ◽  
Kazem Jamshidi-Ghaleh

Abstract Background Carbon dots (C-dots) are photoluminescent nanoparticles with less than 10 nm in size. Today, many studies are performed to exploit the photoluminescence (PL) property of carbon dots, and our focus in this study is to estimate the dipole moment of carbon dots. For reaching our aims, C-dots were synthesized and dissolved in the different solvents. Results Carbon dots with intense photoluminescence properties have been synthesized by a one-step hydrothermal method from a carbon bio-source. In this research, we report on the effect of aprotic solvents on absorption and fluorescence spectra and dipole moments of C-dots dispersed in a range of many aprotic solvents with various polarity and dielectric constant at room temperature. The change in the value of dipole moment was estimated by using the Stokes shifts. The difference between the dipole moment of the excited state and the ground state was shown using an extended form of Lippert equations by Kawski and co-workers. Conclusions The values found for μg = 1.077 D, and μe = 3.157 D, as well as the change in the dipole moments. The results showed that the dipole moment of the excited state is more than the ground state, indicating a high density and redistribution of electrons in the excited state. Finally, the quantum yield of C-dots in the eclectic aprotic solvents was communicated and discussed.


2008 ◽  
Vol 128 (4) ◽  
pp. 044304 ◽  
Author(s):  
Lorenzo Lodi ◽  
Roman N. Tolchenov ◽  
Jonathan Tennyson ◽  
A. E. Lynas-Gray ◽  
Sergei V. Shirin ◽  
...  

2018 ◽  
Vol 34 (4) ◽  
pp. 2170-2179
Author(s):  
Manjula Rayanal ◽  
Prasad Pralhad Pujar ◽  
Sridhar D

The solvatochromic fluorescence behaviour of mono-carbonyl curcumin analogues has been studied in ten different solvents ranging from non-polar to polar. The solvent effect on the spectral properties of analogues has been discussed. The ground state dipole moments were estimated experimentally by Bilot-Kawski equation which is a function of Stokes shift with the solvent polarity parameters and Guggenheim method and theoretically by TD-DFT studies. The excited state dipole moment was determined using Bilot-Kawski equations. The excited state dipole moments for the two molecules were found to be higher than their corresponding ground state dipole moments. Theoretically Frontier molecular orbital (HOMO/ LUMO) energies were determined by Gaussian 09 W software using TD-DFT.


2015 ◽  
Vol 19 (01-03) ◽  
pp. 527-534
Author(s):  
Kamlesh Awasthi ◽  
Hung-Yu Hsu ◽  
Hung-Chu Chiang ◽  
Chi-Lun Mai ◽  
Chen-Yu Yeh ◽  
...  

Polarized electroabsorption (E-A) spectra of highly efficient porphyrin sensitizers (YD2 and YD2-oC8) have been measured in benzene solution. Polarized E-A spectra of these push–pull porphyrins embedded in poly(methyl methacrylate) films or sensitized on TiO 2 films are also observed. Based on the analysis of the E-A spectra, the magnitude of the electric dipole moment both in the ground state and in the lowest excited state have been evaluated in solution and in solid films. The electric dipole moment in the excited state of these compounds is very large on TiO 2 films, suggesting the interfacial charge transfer on TiO 2 surface following photoexcitation of porphyrin dyes. The electric dipole moment in the excited state evaluated from the E-A spectra is very different from the one evaluated from the electrophotoluminescence spectra on TiO 2, suggesting that the strong local field of TiO 2 films is applied to the fluorescing dyes attached to TiO 2 films.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740062
Author(s):  
Chun Zhu ◽  
Jia-Meng Du ◽  
Jin-Chen Zhao ◽  
Tuo Zhu ◽  
Guo-Qing Chen

The fundamental and the fluorescence anisotropies of New Red and Erythrosine were measured. The intersection angles between the absorption and the emission dipole moments for New Red and Erythrosine are 4.44[Formula: see text] and 23.26[Formula: see text], respectively. The average angle shift of the emission dipole moment of New Red is 3.91[Formula: see text] during the lifetime of the excited state. This indicates that it has a bifurcated linear structure with weak rotational capacity. The average angle shift of the emission dipole moment of Erythrosine is 9.25[Formula: see text], indicating that it has a partial planar structure and is easier to rotate. The spatial ground state structures were simulated with Gaussian 09.


2013 ◽  
Vol 12 (01) ◽  
pp. 1250099 ◽  
Author(s):  
K. HATUA ◽  
PRASANTA K. NANDI

A number of charge transferring molecules with varying electron donor, acceptor and π-conjugative paths have been considered for the theoretical study of their NLO properties in terms of the linear polarizability and the ground state dipole moment. The equilibrium structures are calculated at the HF, MP2 and B3LYP levels, respectively. The longitudinal components of NLO coefficients are calculated by using HF, MP2, B3LYP, BHHLYP, CAM-B3LYP, and wB97XD methods for 6-31+G(p,d) and 6-311++G(p,d) basis sets. The hyperpolarizabilities obtained at different levels of calculation showed a fairly consistent trend. The relationships between hyperpolarizabilities, polarizability and ground state dipole moment have been proposed by considering only the two-level term in the standard sum-over-state (SOS) expressions and the generalized Thomas–Kuhn (TK) sum rule. The ab initio calculated first- and second-hyperpolarizabilities fairly correlate with the reduced 2-level contributions relating to the linear polarizability and ground state dipole moment. For a given length of conjugation the stronger enhancement of cubic polarizability arises from the increase of quadratic polarizability for comparable values of linear polarizability and dipole moment. The idea developed in the present work can be used to make a rational design of potential NLO-phores.


Sign in / Sign up

Export Citation Format

Share Document