Quality Procedures for VLSI/VHSIC (Very Large Scale Integrated and Very High Speed Integrated Circuits) Type Devices.

1985 ◽  
Author(s):  
Seymour Cohen
Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


2010 ◽  
Vol 158 ◽  
pp. 184-188 ◽  
Author(s):  
Ming Shan Yang ◽  
Lin Kai Li ◽  
Jian Guo Zhang

The surface modification of silica for epoxy molding compounds (EMC) was conducted by plasma polymerization using RF plasma (13.56MPa), and the modification factors such as plasma power, gas pressure and treatment time were investigated systematically in this paper. The monomers utilized for the plasma polymer coatings were pyrrole, 1,3-diaminopropane, acrylic acid and urea. The plasma polymerization coating of silica was characterized by FTIR, contact angle. Using the silica treated by plasma as filler, ortho-cresol novolac epoxy as main resin, novolac phenolic-formaldehyde resin as cross-linking agent and 2-methylmizole as curing accelerating agent, the EMCs used for the packaging of large-scale integrated circuits were prepared by high-speed pre-mixture and twin roller mixing technology. The results have shown that the surface of silica can be coated by plasma polymerization of pyrrole, 1,3-diaminopropane, acrylic acid and urea, and the comprehensive properties of EMC were improved.


1990 ◽  
Vol 01 (03n04) ◽  
pp. 245-301 ◽  
Author(s):  
M.F. CHANG ◽  
P.M. ASBECK

Recent advances in communication, radar and computational systems demand very high performance electronic circuits. Heterojunction bipolar transistors (HBTs) have the potential of providing a more efficient solution to many key system requirements through intrinsic device advantages than competing technologies. This paper reviews the present status of GaAs and InP-based HBT technologies and their applications to digital, analog, microwave and multifunction circuits. It begins with a brief review of HBT device concepts and critical epitaxial growth parameters. Issues important for device modeling and fabrication technologies are discussed. The paper then highlights the performance and the potential impact of HBT devices and integrated circuits in various application areas. Key prospects for future HBT development are also addressed.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 363
Author(s):  
Qi Zhang ◽  
Zhuangzhuang Xing ◽  
Duan Huang

We demonstrate a pruned high-speed and energy-efficient optical backpropagation (BP) neural network. The micro-ring resonator (MRR) banks, as the core of the weight matrix operation, are used for large-scale weighted summation. We find that tuning a pruned MRR weight banks model gives an equivalent performance in training with the model of random initialization. Results show that the overall accuracy of the optical neural network on the MNIST dataset is 93.49% after pruning six-layer MRR weight banks on the condition of low insertion loss. This work is scalable to much more complex networks, such as convolutional neural networks and recurrent neural networks, and provides a potential guide for truly large-scale optical neural networks.


2021 ◽  
Author(s):  
Mark Dong ◽  
Genevieve Clark ◽  
Andrew J. Leenheer ◽  
Matthew Zimmermann ◽  
Daniel Dominguez ◽  
...  

AbstractRecent advances in photonic integrated circuits have enabled a new generation of programmable Mach–Zehnder meshes (MZMs) realized by using cascaded Mach–Zehnder interferometers capable of universal linear-optical transformations on N input/output optical modes. MZMs serve critical functions in photonic quantum information processing, quantum-enhanced sensor networks, machine learning and other applications. However, MZM implementations reported to date rely on thermo-optic phase shifters, which limit applications due to slow response times and high power consumption. Here we introduce a large-scale MZM platform made in a 200 mm complementary metal–oxide–semiconductor foundry, which uses aluminium nitride piezo-optomechanical actuators coupled to silicon nitride waveguides, enabling low-loss propagation with phase modulation at greater than 100 MHz in the visible–near-infrared wavelengths. Moreover, the vanishingly low hold-power consumption of the piezo-actuators enables these photonic integrated circuits to operate at cryogenic temperatures, paving the way for a fully integrated device architecture for a range of quantum applications.


Sign in / Sign up

Export Citation Format

Share Document