Posturing Fire Supporters to Utilize Naval Surface Fire Support

2002 ◽  
Author(s):  
John C. Goetz ◽  
II
Keyword(s):  
2012 ◽  
Vol 11 (8) ◽  
pp. 1475-1480 ◽  
Author(s):  
Omer Kucuk ◽  
Ertugrul Bilgili ◽  
Serkan Bulut ◽  
Paulo M. Fernandes

1999 ◽  
Vol 114 (2-3) ◽  
pp. 113-135 ◽  
Author(s):  
Carol Miller ◽  
Dean L Urban
Keyword(s):  

2018 ◽  
Author(s):  
Hang Yin ◽  
Hui Jin ◽  
Ying Zhao ◽  
Yuguang Fan ◽  
Liwu Qin ◽  
...  

2018 ◽  
Vol 45 (2) ◽  
pp. 1067-1103
Author(s):  
Martin Ambroz ◽  
Martin Balažovjech ◽  
Matej Medl’a ◽  
Karol Mikula

Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 574
Author(s):  
Justin S. Crotteau ◽  
Christopher R. Keyes

Research Highlights: This study provides much needed insight into the development of resistance to disturbance and growth dynamics of overstory trees in response to restoration-based fuel reduction, and will be useful to scientists and managers attempting to better grasp the relative merits of restoration treatment types. Background and Objectives: Restoration-based fuel reduction treatments are common in dry, fire-prone forests of the western United States. The primary objective of such treatments is to immediately reduce a stand’s crown fire hazard. However, the impact of these treatments on residual trees is relevant to assess their longevity and resistance to future disturbances. In this study, we evaluate the effects of restoration on retained overstory ponderosa pine (Pinus ponderosa Lawson & C. Lawson) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees in western Montana, where treatments were experimentally implemented 13 years prior as part of the national Fire and Fire Surrogate study. Materials and Methods: We examined tree attributes in response to the following replicated treatments: thin-only, burn-only, thin + burn, and a no-action control. We analyzed three different tree attributes that confer resistance to common disturbances: height-to-diameter ratio (resistance to wind), bark thickness (resistance to surface fire), and growth efficiency (resistance to bark beetles). Results: Our models suggest that thinning (with or without burning) alters tree attributes relative to the control in a manner that may increase tree resistance to wind and snow breakage, surface fire, and biotic agents such as bark beetles. Further analysis of annual growth of ponderosa pine and Douglas-fir varied by treatment type: thinning-based restoration (thin-only and thin + burn) increased diameter growth for both species, crown length and width in ponderosa pine, and crown length in Douglas-fir relative to unthinned treatments. Burning (burn-only and thin + burn) did not significantly affect tree growth relative to unburned treatments. Conclusions: While low-severity prescribed burning treatments are often used for restoration and have various ecosystem benefits, this study demonstrates that thinning (alone or in addition to burning) produces more measureable, beneficial results to overstory tree disturbance resistance metrics and growth.


1987 ◽  
Vol 17 (7) ◽  
pp. 697-704 ◽  
Author(s):  
James K. Agee ◽  
Mark H. Huff

Fuel succession was quantified for a 515-year chronosequence in a Tsugaheterophylla/Pseudotsugamenziesii forest. Postfire stand ages selected were 1, 3, 19, 110, 181, and 515. After initial reductions due to mortality from fire in the first 3 years, live aboveground biomass in the tree component increased over time to over 1100 t/ha. Shrub and herb layer biomass was highest in year 19 and year 515. Dead aboveground biomass had different trends for different fuel size classes; normalized fuel loadings of five dead and down fuel categories peaked at four different stand ages: 1-h and 10-h timelag (TL) fuels, age 1; 100-h TL fuels, age 19; 1000-h TL fuels, age 110; >1000-h TL fuels, age 515. Surface fire behavior was highest early in the sere and lowest at ages 110–181. Old-growth forest patches appear to be best buffered against forest fire by mature forest patches rather than old growth or recently burned natural stands.


2006 ◽  
Vol 15 (3) ◽  
pp. 439 ◽  
Author(s):  
Peter Z. Fulé ◽  
Thomas A. Heinlein ◽  
W. Wallace Covington

Fire scars and other paleoecological methods are imperfect proxies for detecting past patterns of fire events. However, calculations of long fire rotations in Grand Canyon ponderosa pine forests by Baker are not convincing in methodology or assumptions compared with fire-scar evidence of frequent surface fires. Patches of severe disturbance are a possible hypothesis to explain the relatively short age structure at the park, where ~12% fewer trees were older than 300 years compared with another unharvested northern Arizona site. However, mapped patterns of old trees as well as the evidence for frequent surface fire from fire scars, charcoal deposition studies, and evolutionary history are more consistent with the dominance of surface fire prior to c. 1880. The most relevant available evidence of fire recurrence at a given point, mean point fire intervals, had median values <16 years at all five study sites, close to filtered composite fire interval statistics (~6–10 years), but much lower than Baker’s calculated fire rotation values (55–110 years). The composite fire interval is not a uniquely important statistic or a numerical guideline for management, but one of many lines of evidence underscoring the ecological role of frequent surface fire in ponderosa pine forests.


Sign in / Sign up

Export Citation Format

Share Document