Bistatic Radar System Graphical User Interface Calibration and Measurement Data Analysis and Display Components

2002 ◽  
Author(s):  
Gerald Bright
Author(s):  
Martin Lollesgaard ◽  
Rasmus Brøndum

<p>The monitoring system on the Great Belt Bridge has been under a renewal process for the last 4 years. <p>Worn down sensors for alarm and maintenance purposes have been replaced by new more appropriate sensors. <p>A new structural health monitoring system for maintenance with a database and a graphical user interface (GUI) has been developed. The software collects and stores measurement data from a large number of sensors on both the cable‐suspended East Bridge and the low‐level West Bridge. From summer 2018 more than 400 sensors can be monitored from one GUI. More sensors are following in 2019. <p>The project has been carried out by Rambøll as client consultant and Krabbenhøft & Ingolfsson as main contractor.


2016 ◽  
Vol 49 (4) ◽  
pp. 1377-1382 ◽  
Author(s):  
Javier Gonzalez-Platas ◽  
Matteo Alvaro ◽  
Fabrizio Nestola ◽  
Ross Angel

EosFit7-GUIis a full graphical user interface designed to simplify the analysis of thermal expansion and equations of state (EoSs). The software allows users to easily perform least-squares fitting of EoS parameters to diffraction data collected as a function of varying pressure, temperature or both. It has been especially designed to allow rapid graphical evaluation of both parametric data and the EoS fitted to the data, making it useful both for data analysis and for teaching.


2019 ◽  
Vol 23 (10) ◽  
pp. 1825-1828 ◽  
Author(s):  
R.W. Bello ◽  
S. Abubakar

Open grazing or free-range grazing is one of the methods employed by the Nigeria nomadic cattle herders to provide pasture for their cattle. This method of providing pasture for cattle comes with so many challenges among which are cow swapping, ownership disputes, rustling and cow intrusion to farmland. Some existing methods of guiding against these challenges are expensive, injurious, and unreliable to apply. The objective of this paper is to develop an enhanced and affordable software package for cow recognition and identification using a graphical user interface and information encoding method. Data analysis module with software application for the analysis of the generated code is proposed; the software application installed on a computer or smart-phone may be standalone or otherwise. Data about individual cow is digitally collected, coded and stored using necessary resources, tools, and methods. Moreover, by tagging individual cow with the generated code, and matching the code with the ones in the database using code reader, individual cow can be recognized and identified.Keywords: Open grazing; Free-range grazing; Nomadic herder; Cow identification; Pasture.


1999 ◽  
Vol 605 ◽  
Author(s):  
Dennis M. Freeman

AbstractWe have developed a versatile instrument for in situ measurement of motions of MEMS. Images of MEMS are magnified with an optical microscope and projected onto a CCD camera. Stroboscopic illumination is used to obtain stop-action images of the moving structures. Stopaction images from multiple focal planes provide information about 3D structure and 3D motion. Image analysis algorithms determine motions of all visible structures with nanometer accuracy.Hardware for the system includes the microscope, CCD camera and associated frame grabber, piezoelectric focusing element, and a modular stimulator that generates arbitrary periodic waveforms and synchronized stroboscopic illumination. These elements are controlled from a Pentium-based computer using a graphical user interface that guides the user through both data collection and data analysis. The system can measure motions at frequencies as high as 5 MHz with nanometer resolution, i.e., well below the wavelength of light.


2020 ◽  
Vol 53 (4) ◽  
pp. 1130-1137 ◽  
Author(s):  
Daniel Apel ◽  
Martin Genzel ◽  
Matthias Meixner ◽  
Mirko Boin ◽  
Manuela Klaus ◽  
...  

EDDIDAT is a MATLAB-based graphical user interface for the convenient and versatile analysis of energy-dispersive diffraction data obtained at laboratory and synchrotron sources. The main focus of EDDIDAT up to now has been on the analysis of residual stresses, but it can also be used to prepare measurement data for subsequent phase analysis or analysis of preferred orientation. The program provides access to the depth-resolved analysis of residual stresses at different levels of approximation. Furthermore, the graphic representation of the results also serves for the consideration of microstructural and texture-related properties. The included material database allows for the quick analysis of the most common materials and is easily extendable. The plots and results produced with EDDIDAT can be exported to graphics and text files. EDDIDAT is designed to analyze diffraction data from various energy-dispersive X-ray sources. Hence it is possible to add new sources and implement the device-specific properties into EDDIDAT. The program is freely available to academic users.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 192 ◽  
Author(s):  
Emanuel Gonçalves ◽  
Julio Saez-Rodriguez

There is an increasing number of software packages to analyse biological experimental data in the R environment. In particular, Bioconductor, a repository of curated R packages, is one of the most comprehensive resources for bioinformatics and biostatistics. The use of these packages is increasing, but it requires a basic understanding of the R language, as well as the syntax of the specific package used. The availability of user graphical interfaces for these packages would decrease the learning curve and broaden their application.   Here, we present a Cytoscape plug-in termed Cyrface that allows Cytoscape plug-ins to connect to any function and package developed in R. Cyrface can be used to run R packages from within the Cytoscape environment making use of a graphical user interface. Moreover, it links the R packages with the capabilities of Cytoscape and its plug-ins, in particular network visualization and analysis. Cyrface’s utility has been demonstrated for two Bioconductor packages (CellNOptR and DrugVsDisease), and here we further illustrate its usage by implementing a workflow of data analysis and visualization. Download links, installation instructions and user guides can be accessed from the Cyrface homepage (http://www.ebi.ac.uk/saezrodriguez/cyrface/).


2021 ◽  
Vol 6 (59) ◽  
pp. 2940
Author(s):  
Samay Garg ◽  
Julie Fornaciari ◽  
Adam Weber ◽  
Nemanja Danilovic

Sign in / Sign up

Export Citation Format

Share Document