scholarly journals Promoting Germination in Ornamental Palm Seeds through Dormancy Alleviation

2009 ◽  
Vol 19 (4) ◽  
pp. 682-685 ◽  
Author(s):  
Hector E. Pérez

Delayed and inconsistent seed germination often hampers commercial production of palms (Arecaceae). Such sporadic germination is commonly due to seed dormancy. Mature, freshly shed seeds of palms typically display a combination of underdeveloped embryos (morphological dormancy) and the inability of developing embryos to rupture covering structures (physiological dormancy). Fruit and seedcoats are capable of imbibing water. Therefore, dormancy due to water-impermeable fruit or seedcoats (physical dormancy) does not occur. Removal of embryo covering structures, such as the pericarp and operculum, followed by incubation under moist, warm (25–35 °C) conditions promotes rapid and complete germination. Complete burial in soil promotes germination of seeds in intact fruit of loulu palm (Pritchardia remota).

1991 ◽  
Vol 69 (9) ◽  
pp. 1972-1976 ◽  
Author(s):  
Paul Garth Harrison

Mechanisms of dormancy of seeds from an annual population of the seagrass Zostera marina L. (eelgrass) in the SW Netherlands were investigated in the laboratory. Both physiological dormancy (a requirement for reduced salinity for germination) and physical dormancy (imposed by the seed coat) existed in recently shed seeds. Physiological seed dormancy was partly released in the seed bank by early winter, but physical dormancy lasted longer. By March seeds germinated quickly in the dark in full-strength seawater without artificial weakening of the seed coat. Viable seeds were released with coats that ranged from green (easily ruptured by the embryo) to brown (not easily ruptured); this variation may account for the occasional seedlings that appear during winter. No significant effects of temperature or light on germination were detected. A reexamination of the literature suggests that the observed variation in timing of germination in eelgrass populations may be a result of hitherto overlooked aspects of dormancy. Key words: eelgrass, seagrass, seed coat, seed dormancy, seed germination, Zostera marina.


2020 ◽  
Vol 100 (6) ◽  
pp. 666-673
Author(s):  
Yunpeng Gao ◽  
Mingwei Zhu ◽  
Qiuyue Ma ◽  
Shuxian Li

The seeds of Cercis chinensis Bunge are important for reproduction and propagation, but strong dormancy controls their germination. To elucidate the causes of seed dormancy in C. chinensis, we investigated the permeability of the hard seed coat and the contribution of the endosperm to physical dormancy, and we examined the effect of extracts from the seed coat and endosperm. In addition, the effectiveness of scarification methods to break seed dormancy was compared. Cercis chinensis seeds exhibited physical and physiological dormancy. The hard seed coat played an important role in limiting water uptake, and the endosperm acted as a physical barrier that restricted embryo development in imbibed seeds. Germination percentage of Chinese cabbage [Brassica rapa subsp. chinensis (L.) Hanelt] seeds was reduced from 98% (control) to 28.3% and 56.7% with a seed-coat extract and an endosperm extract, respectively. This demonstrated that both the seed coat and endosperm contained endogenous inhibitors, but the seed-coat extract resulted in stronger inhibition. Mechanical scarification, thermal scarification, and chemical scarification had positive effects on C. chinensis seed germination. Soaking non-scarified seeds in gibberellic acid (GA3) solution did not promote germination; however, treatment with exogenous GA3 following scarification significantly improved germination. The optimal method for promoting C. chinensis seed germination was soaking scarified seeds in 500 mg·L−1 GA3 for 24 h followed by cold stratification at 5 °C for 2 mo.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2018 ◽  
Vol 66 (3) ◽  
pp. 218 ◽  
Author(s):  
Vidushi Thusithana ◽  
Sean M. Bellairs ◽  
Christine S. Bach

Seed germination traits of seasonal rainforest species differ from permanently moist evergreen rainforest species due to the prolonged seasonal drought. We investigated whether seed germination traits used to categorise evergreen rainforest species into pioneer and climax guilds were applicable to seasonal rainforest species. Seed dormancy, light requirements for germination and seed storage types of five climax and thirteen pioneer species of a coastal vine thicket were studied. Results were compared with published studies of evergreen rainforest species. Evergreen rainforest pioneer species are typically dormant, require light to germinate and tolerate desiccation, whereas climax species are typically non-dormant, tolerate shade during germination and are sensitive to desiccation. In seasonal rainforest we found that a high proportion of pioneer species had seeds that were non-dormant (62%), and a high proportion of pioneer species germinated equally well in light and dark conditions. In seasonal rainforest, we found that the majority of climax species had desiccation tolerant seeds, whereas in evergreen rainforest the proportion of climax species producing desiccation sensitive seeds is equal to or greater than the proportion of species with desiccation tolerant seeds. In seasonal rainforest species physical, physiological and epicotyl dormancy types were found. Generally, for seasonal rainforest species, the prevalent form of dormancy in pioneer species was physical dormancy whereas physiological dormancy was most common in evergreen rainforest pioneer species with dormancy. Our results suggest that the contrasting seed biology traits that typically apply to pioneer and climax species of evergreen rainforest species don’t typically apply to seasonal rainforest species.


2021 ◽  
pp. 1-29
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin

Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.


2007 ◽  
Vol 17 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Adriana Sautu ◽  
Jerry M. Baskin ◽  
Carol C. Baskin ◽  
Jose Deago ◽  
Richard Condit

AbstractThis is the first study to determine the class of seed dormancy (or non-dormancy) of a large number of native tree species in a tropical forest, the seasonal moist tropical forest of the Panama Canal Watershed (PCW), or to test the relationships between class of dormancy (or non-dormancy) and various seed and ecological characteristics of the constituent species. Fresh seeds of 49 of 94 tree species were non-dormant (ND), and 45 were dormant (D). Seeds of 23 species had physiological dormancy (PD), 13 physical dormancy (PY), two morphological dormancy (MD), 7 morphophysiological dormancy (MPD) and none combinational dormancy (PY+PD). Seeds with PY were significantly smaller ( < 0.1 g) and drier (moisture content < 16%) at maturity than those that were ND or in the other D classes. Seeds of 62, 42 and 53% of species dispersed in the early rainy, late rainy (LRS) and dry seasons, respectively, were ND. The majority (61%) of species with PD seeds, but only 17% of those with PY seeds, were dispersed in the LRS. The proportion of species with ND seeds was higher in large-size (63%) than in mid-size (35%) and understorey (17%) trees, but differed only slightly between non-pioneers (58%) and pioneers (54%). The proportion of species with D seeds increased only slightly through a precipitation gradient of about 3100 to 1900 mm in the PCW; however, PY increased from 19 to 32% and PD decreased from 63 to 44%.


2020 ◽  
Vol 144 (3-4) ◽  
pp. 159-166
Author(s):  
Hanife Erdogan Genç ◽  
Ali Ömer Üçler

This study was carried out to determine effects of different pretreatment on seed germination and to overcome dormancy in Acer cappadocicum seeds. The seeds were collected in 2008 three times with aproximately 15-days intervals. In order to overcome dormancy, several germination treatments were applied. The treatments were (1) different seed collection time, (2)soaking in water, (3) cold-moist stratification and (4) GA<sub>3</sub> (gibberellic acid) application. The treated seeds were germinated in growing chamber at 5 <sup>0</sup>C and in greenhouse conditions. This research showed that seeds of Acer cappadocicum exhibit physiological dormancy and require stratification period to overcome seed dormancy. The highest germination percentage in the growing chamber subjected to GA<sub>3</sub> process after eight weeks of stratification treatment was 62 % for Acer cappadocicum seeds. The highest germination percentage in greenhouse was obtained with cold stratification after eight weeks (95 %). It was found out that GA<sub>3</sub> treatment had a significant effect on germination in growth chamber + 5 <sup>0</sup>C but GA<sub>3</sub> treatment didn’t have a significant effect on germination in greenhouse conditions. GA<sub>3</sub> treatment and soaking of unstratified seeds in water for 48 hr didn’t have any positive effect on germination value in greenhouse conditions. Although growth chamber and green house results both indicated that seed collection time did not seem to play a role as statistically on seed germination, Duncan’s test showed that the third seed collection time was in a different group.


2005 ◽  
Vol 15 (4) ◽  
pp. 357-360 ◽  
Author(s):  
Carol C. Baskin ◽  
Jerry M. Baskin

Studies were conducted to determine if small embryos (i.e. low embryo length:seed length ratio) in mature dwarf seeds (0.2–2 mm) are underdeveloped. In this case, they would grow (inside the seed) prior to germination, and seeds would have morphological or morphophysiological dormancy. Prior to radicle emergence, embryo length in seeds of Drosera anglica (Droseraceae), Campanula americana, Lobelia appendiculata, L. spicata (Campanulaceae) and Sabatia angularis (Gentianaceae) increased 0, 103, 182, 83 and 57%, respectively. Since embryo growth did not occur in seeds of D. anglica prior to germination, embryos, although small, are fully developed; seeds have only physiological dormancy. The underdeveloped embryo in seeds of C. americana has little or no physiological dormancy; thus, seeds have morphological dormancy. On the other hand, underdeveloped embryos in seeds of L. appendiculata, L. spicata and S. angularis are physiologically dormant, and seeds have morphophysiological dormancy. Therefore, since small embryos in dwarf seeds may or may not be underdeveloped, assignment of seeds to a dormancy class requires that studies be done to determine if embryos grow inside the seed before germination can occur. Such information is important in understanding the evolutionary relationship of the different kinds of seed dormancy.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 773-774 ◽  
Author(s):  
Y.C. Sun ◽  
Y.J. Zhang ◽  
K. Wang ◽  
X.J. Qiu

Iris lactea seed is characterized mainly by physiological dormancy. Two experiments were conducted to investigate the effect of NaOH treatment and stratification on Iris seed germination. In Experiment 1, seeds were treated with 14.38 m NaOH for 0 to 28 hours. In Experiment 2, NaOH treated and nontreated seeds were stratified under 7 °C and moistened condition for 0 to 40 days. As results, NaOH treatment for 20 hours effectively removed seedcoat and improved germination percentage from 0% to 56% compared to control (0 hours). However, germination percentage started to decrease after 20 hours. Stratification for 40 days further improved germination percentage of NaOH treated seeds to >80%, but did not affected seeds without NaOH treatment. Results demonstrate that combination of NaOH treatment and stratification is an effective practice to break Iris seed dormancy and improve germination percentage.


Sign in / Sign up

Export Citation Format

Share Document