scholarly journals Effects of different treatments on seed dormancy breaking and germination in Acer cappadocicum Gleditsch var. cappadocicum

2020 ◽  
Vol 144 (3-4) ◽  
pp. 159-166
Author(s):  
Hanife Erdogan Genç ◽  
Ali Ömer Üçler

This study was carried out to determine effects of different pretreatment on seed germination and to overcome dormancy in Acer cappadocicum seeds. The seeds were collected in 2008 three times with aproximately 15-days intervals. In order to overcome dormancy, several germination treatments were applied. The treatments were (1) different seed collection time, (2)soaking in water, (3) cold-moist stratification and (4) GA<sub>3</sub> (gibberellic acid) application. The treated seeds were germinated in growing chamber at 5 <sup>0</sup>C and in greenhouse conditions. This research showed that seeds of Acer cappadocicum exhibit physiological dormancy and require stratification period to overcome seed dormancy. The highest germination percentage in the growing chamber subjected to GA<sub>3</sub> process after eight weeks of stratification treatment was 62 % for Acer cappadocicum seeds. The highest germination percentage in greenhouse was obtained with cold stratification after eight weeks (95 %). It was found out that GA<sub>3</sub> treatment had a significant effect on germination in growth chamber + 5 <sup>0</sup>C but GA<sub>3</sub> treatment didn’t have a significant effect on germination in greenhouse conditions. GA<sub>3</sub> treatment and soaking of unstratified seeds in water for 48 hr didn’t have any positive effect on germination value in greenhouse conditions. Although growth chamber and green house results both indicated that seed collection time did not seem to play a role as statistically on seed germination, Duncan’s test showed that the third seed collection time was in a different group.

2020 ◽  
Vol 144 (9-10) ◽  
pp. 473-473
Author(s):  
Hanife Erdogan Genç ◽  
Ali Ömer Üçler

In this study, seed dormancy removal and germination characteristics of Acer trautvetteri Medvedev, is one of the major maple species of the eastern Black Sea region, were studied. To do that, the seeds were collected in 2008 three times with aproximately 15-days intervals. In order to remove dormancy, several germination treatments were applied. The treatments were (1) different seed collection time, (2) soaking in water, (3) cold-moist stratification and (4) GA3 (gibberellic acid) application. The treated seeds were germinated in growing chamber at 5 0C and in greenhouse conditions. This research indicated that seeds of Acer trautvetteri exhibit physiological dormancy and require stratification period to remove seed dormancy. The highest germination percentage in the growing chamber subjected to GA3 application after eight weeks of stratification treatment was 66 % for Acer trautvetteri seeds. The highest germination percentage in greenhouse was obtained with cold stratification after eight weeks (81 %). Although GA3 treatment had a positive effect on germination in growth chamber + 5 0C, GA3 treatment had a negative effect on germination in greenhouse conditions. Soaking in water of nonstratified seeds wasn’t any significant difference on seed germination. There was a positive correlation between seed collection time and germination (r=0.59). As a result, the third collection time (in october) should be preferred as seed collection time in Acer trautvetteri seeds, considering that it may vary according to the climatic conditions of the year.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2018 ◽  
Vol 36 ◽  
Author(s):  
M. REZVANI ◽  
S.A. SADATIAN ◽  
H. NIKKHAHKOUCHAKSARAEI

ABSTRACT: Our knowledge about seed dormancy breaking and environmental factors affecting seed germination of greater bur-parsley (Turgenia latifolia) is restricted. This study has addressed some seed dormancy breaking techniques, including different concentrations of gibberellic acid (GA3) and potassium nitrate (KNO3), leaching duration, physical scarification as well as some environmental factors effective on seed germination such as salt and drought stresses, pH and seed planting depth. Seed germination was promoted with lower concentrations of KNO3 (0.01 to 0.02 g L-1), while higher concentrations reduced germination percentage. Seed dormancy was declined by low concentrations of GA3 up to 100 ppm. Seeds of greater bur-parsley germinated in a range of pH from 3 to 7. With enhancement of drought and salt stresses, seed germination decreased. Also, there was no seed germination in a high level of stresses. Seedling emergence reduced as planting depth increased. Use of GA3, KNO3, leaching and physical scarification had a positive effect on seed dormancy breaking of greater bur-parsley. The information from the study increases our knowledge about seed dormancy breaking techniques, response of germination to drought and salt stresses and also determination of distribution regions of greater bur-parsley in the future.


1993 ◽  
Vol 23 (7) ◽  
pp. 1306-1313 ◽  
Author(s):  
G.E. Caron ◽  
B.S.P. Wang ◽  
H.O. Schooley

The effects of cone storage period and pregermination treatment on seed maturity and dormancy were compared for cones of white spruce (Piceaglauca (Moench) Voss) collected from individual trees in 1984 and 1988. Seeds were extracted from cones and germinated after 2 or 6 weeks of cone storage in 1984 and after 2, 4, 6, 10, or 14 weeks in 1988. Based on cumulative degree-days, seeds were more mature at collection time in 1988 than in 1984. Seeds from 1984 cones stored for 6 weeks matured during storage, and both germination percentage (GP) and rate of germination (GR) were significantly improved. In contrast, storage up to 14 weeks in 1988 did not increase GP and GR, as seed had attained maturity prior to cone collection. Seed dormancy was present in both 1984 and 1988. Significant improvements in GP and GR were achieved in 1984 with a pregermination treatment even before seed maturity was attained. Prechilling of seed after 6 weeks of cone storage increased GP from 60 to 95% in 1984 and 64 to 89% in 1988.


2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
Vian Dler Ali ◽  
Farhad Hassan Aziz

Gundelia tournefortii L. is adapted to mountains area climate, and the germination of this plant is not easily. This research conducted to study the effect of different seed treatments in various treatment durations in two experiments in petri dish in the laboratory and in seedling tray in the lath house to breaking seed dormancy and germination stimulus. Results indicated that there is significant enhancement of germination by all treatments and the maximum germination percentage was obtained by seed freezing 99.17% in the laboratory and 93.33% in the lath house for all treatment durations 12, 14, 48 and 72 hours. The other parameters of seed germination like germination speed, peak value, mean daily germination, mean germination time, germination value, radicle length, radicle elongation velocity, plumule length, plumule elongation velocity, seedling fresh and dry weight escalated by seed freezing and seed soaking in tap water at all soaking durations 12, 24, 48 and 72 hours. Gundelia tournefortii L. germinated seed was an anatomically examined by paraffin method and calculated diploid number of chromosomes 2n=2x=18 by aceto-carmine squash methods


2020 ◽  
Vol 100 (6) ◽  
pp. 666-673
Author(s):  
Yunpeng Gao ◽  
Mingwei Zhu ◽  
Qiuyue Ma ◽  
Shuxian Li

The seeds of Cercis chinensis Bunge are important for reproduction and propagation, but strong dormancy controls their germination. To elucidate the causes of seed dormancy in C. chinensis, we investigated the permeability of the hard seed coat and the contribution of the endosperm to physical dormancy, and we examined the effect of extracts from the seed coat and endosperm. In addition, the effectiveness of scarification methods to break seed dormancy was compared. Cercis chinensis seeds exhibited physical and physiological dormancy. The hard seed coat played an important role in limiting water uptake, and the endosperm acted as a physical barrier that restricted embryo development in imbibed seeds. Germination percentage of Chinese cabbage [Brassica rapa subsp. chinensis (L.) Hanelt] seeds was reduced from 98% (control) to 28.3% and 56.7% with a seed-coat extract and an endosperm extract, respectively. This demonstrated that both the seed coat and endosperm contained endogenous inhibitors, but the seed-coat extract resulted in stronger inhibition. Mechanical scarification, thermal scarification, and chemical scarification had positive effects on C. chinensis seed germination. Soaking non-scarified seeds in gibberellic acid (GA3) solution did not promote germination; however, treatment with exogenous GA3 following scarification significantly improved germination. The optimal method for promoting C. chinensis seed germination was soaking scarified seeds in 500 mg·L−1 GA3 for 24 h followed by cold stratification at 5 °C for 2 mo.


2016 ◽  
Vol 39 (2) ◽  
pp. 111-115
Author(s):  
Naseer Mohammad ◽  
Ankur Dahayat ◽  
Yogeshwar Mishra

An experiment was conducted to investigate the effect of different seed treatment and soil media on germination percentage and associate parameters in Litsea glutinosa during May to June, 2013 at vegetative multiplication nursery of Genetics and Plant Propagation Division of Tropical Forest Research Institute, Jabalpur (Madhya Pradesh). Data on daily seed germination from twenty treatment combination was recorded and used for estimation of germination percentage, germination energy (%), energy period, germination value and peak value of mean germination. Critical perusal of analysis revealed that seed treatment with ‘Water+200 ppm GA3’ was resulted in positive effect on all the characters studied i.e. germination percentage, germination energy, energy period, germination value and peak value of mean germination. Whereas, potting mixture of ‘1/3 Sand+1/3 FYM+1/3 Soil’ revealed positive effect on all the characters studied among all the potting mixture tried.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 773-774 ◽  
Author(s):  
Y.C. Sun ◽  
Y.J. Zhang ◽  
K. Wang ◽  
X.J. Qiu

Iris lactea seed is characterized mainly by physiological dormancy. Two experiments were conducted to investigate the effect of NaOH treatment and stratification on Iris seed germination. In Experiment 1, seeds were treated with 14.38 m NaOH for 0 to 28 hours. In Experiment 2, NaOH treated and nontreated seeds were stratified under 7 °C and moistened condition for 0 to 40 days. As results, NaOH treatment for 20 hours effectively removed seedcoat and improved germination percentage from 0% to 56% compared to control (0 hours). However, germination percentage started to decrease after 20 hours. Stratification for 40 days further improved germination percentage of NaOH treated seeds to >80%, but did not affected seeds without NaOH treatment. Results demonstrate that combination of NaOH treatment and stratification is an effective practice to break Iris seed dormancy and improve germination percentage.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Chih-Hsin Yeh ◽  
Kai-Yi Chen ◽  
Yung-I. Lee

Abstract Background Vanilla planifolia is an important tropical orchid for production of natural vanilla flavor. Traditionally, V. planifolia is propagated by stem cuttings, which produces identical genotype that are sensitive to virulent pathogens. However, propagation with seed germination of V. planifolia is intricate and unstable because the seed coat is extremely hard with strong hydrophobic nature. A better understanding of seed development, especially the formation of impermeable seed coat would provide insights into seed propagation and conservation of genetic resources of Vanilla. Results We found that soaking mature seeds in 4% sodium hypochlorite solution from 75 to 90 min significantly increased germination. For the culture of immature seeds, the seed collection at 45 days after pollination (DAP) had the highest germination percentage. We then investigated the anatomical features during seed development that associated with the effect of seed pretreatment on raising seed germination percentage. The 45-DAP immature seeds have developed globular embryos and the thickened non-lignified cell wall at the outermost layer of the outer seed coat. Seeds at 60 DAP and subsequent stages germinated poorly. As the seed approached maturity, the cell wall of the outermost layer of the outer seed coat became lignified and finally compressed into a thick envelope at maturity. On toluidine blue O staining, the wall of outer seed coat stained greenish blue, indicating the presence of phenolic compounds. As well, on Nile red staining, a cuticular substance was detected in the surface wall of the embryo proper and the innermost wall of the inner seed coat. Conclusion We report a reliable protocol for seed pretreatment of mature seeds and for immature seeds culture based on a defined time schedule of V. plantifolia seed development. The window for successful germination of culturing immature seed was short. The quick accumulation of lignin, phenolics and/or phytomelanins in the seed coat may seriously inhibit seed germination after 45 DAP. As seeds matured, the thickened and lignified seed coat formed an impermeable envelope surrounding the embryo, which may play an important role in inducing dormancy. Further studies covering different maturity of green capsules are required to understand the optimal seed maturity and germination of seeds.


Sign in / Sign up

Export Citation Format

Share Document