scholarly journals Effect of Defoliation Time on Depth of Dormancy and Bloom Time for Low-chill Peaches

HortScience ◽  
1990 ◽  
Vol 25 (12) ◽  
pp. 1575-1578 ◽  
Author(s):  
Jon Lloyd ◽  
Daryl Firth

In a relatively low-chill environment, two cultivars of peach [Prunus persica (L.) Batsch] differing in chilling requirement (`Flordaprince', 150 units and `Flordagold', 325 units) were defoliated at 10-day intervals during midautumn. Effects of defoliation on depth of bud dormancy and dose-dependent responses of cuttings to hydrogen cyanamide throughout the dormant period were analyzed to develop a dormancy index (DI). DI values indicate that early defoliation reduces depth of bud dormancy throughout winter for both cultivars. For `Flordaprince', this was translated into early leafing and bloom, but fruit size was reduced by early relative to late defoliation. In contrast to `Flordaprince', vegetative and floral budbreak of `Flordagold' were delayed by early defoliation. These results indicate that early defoliation affects depth of dormancy and growth ability of buds, but that the extent to which these factors affect bud development depends on cultivar.

2019 ◽  
Vol 144 (4) ◽  
pp. 244-256 ◽  
Author(s):  
Lisa Tang ◽  
Shweta Chhajed ◽  
Tripti Vashisth ◽  
Mercy A. Olmstead ◽  
James W. Olmstead ◽  
...  

To determine how the dormancy-breaking agent hydrogen cyanamide (HC) advances budbreak in peach (Prunus persica), this study compared the transcriptome of buds of low-chill ‘TropicBeauty’ peach trees treated with 1% (v/v) HC and that of nontreated trees at 3 and 7 days after treatment (DAT), respectively, using an RNA sequencing analysis. The peak of total budbreak occurred 6 weeks earlier in the HC-treated trees (at 32 DAT) than the nontreated trees (at 74 DAT). There were 1312 and 1095 differentially expressed genes (DEGs) at 3 and 7 DAT, respectively. At 3 DAT, DEGs related to oxidative stress, including the response to hypoxia, lipid oxidation, and reactive oxygen species (ROS) metabolic process, were upregulated in HC-treated buds. Additionally, DEGs encoding enzymes for ROS scavenging and the pentose phosphate pathway were upregulated at 3 DAT but they were not differently expressed at 7 DAT, indicating a temporary demand for defense mechanisms against HC-triggered oxidative stress. Upregulation of DEGs for cell division and development at 7 DAT, which were downregulated at 3 DAT, suggests that cell activity was initially suppressed but was enhanced within 7 DAT. At 7 DAT, DEGs related to cell wall degradation and modification were upregulated, which was possibly responsible for the burst of buds. The results of this study strongly suggest that HC induces transient oxidative stress shortly after application, leading to the release of bud dormancy and, subsequently, causing an increase in cell activity and cell wall loosening, thereby accelerating budbreak in peach.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 570c-570 ◽  
Author(s):  
Jason C. Powell ◽  
Calvin G. Lyons

The state of Texas suffers from a lack of chilling one out of every five years. Reduced yield in temperature fruit crops such as peach (Prunus persica) is one detrimental effect associated withinadequate chilling. Field trials with hydrogen cyanamide (Dormex) have demonstrated that a one to two percent solution applied six weeks prior to bloom will substitute for inadequate chilling of up to 150 hours. Field trials with this chemical have provided further insight into some other possible benefits associated with its use such as: increased marketable yields of fruit crops, enhanced fruit size, and an earlier more concentrated harvest. Advantages noted by the use of this product include a possible earlier crop and reduced labor costs.


1998 ◽  
Vol 8 (4) ◽  
pp. 556-560 ◽  
Author(s):  
Esmaeil Fallahi ◽  
Randy R. Lee ◽  
Gary A. Lee

Hydrogen cyanamide (Dormex, 50% a.i.) for blossom thinning `Early Spur Rome' and `Law Rome' apple (Malus×domestica Borkh.) and `Flavorcrest' peach (Prunus persica L.) was applied with air-blast sprayers on a commercial scale. Full-bloom applications of hydrogen cyanamide at 4 pts formulation per 200 gal/acre (1288 mg·L−1) and 5 pts formulation per 200 gal/acre (1610 mg·L−1) significantly reduced fruit set in apple and peach. In `Early Spur Rome', a postbloom application of carbaryl [Sevin XLR Plus, 4 lb a.i./gal (0.48 kg·L−1)] following a full-bloom spray of hydrogen cyanamide increased fruit thinning with a significant increase in fruit size compared to an application of hydrogen cyanamide alone. In `Law Rome', trees receiving a full-bloom application of hydrogen cyanamide followed by a postbloom application of 1-naphthyl-N-methylcarbamate (carbaryl) + naphthalene acetic acid (NAA) had significantly lower fruit set and larger fruit than those in the carbaryl + NAA treatment. Apples or peaches were not marked by hydrogen cyanamide.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553b-553
Author(s):  
Esmaeil Fallahi

Early thinning of apples is important because of its impact on fruit size and next season's flower bud initiation. In the past, apple cultivars were often sprayed with the blossom thinner sodium dinitro-ortho-cresol(Elgetol) during full bloom, followed by a post-bloom application of a fruit thinner such as carbaryl with or without naphthalene acetic acid (NAA). Elgetol was removed from the market in 1989 because of the high cost of re-registration. Full-bloom sprays of sulfcarbamide (Wilthin), pelargonic acid (Thinex), and endothalic acid (Endothal), ammonium thiosulfate (ATS) or petal fall spray of carbaryl (Sevin XLR Plus) were developed as replacements for Elgetol. Hydrogen cyanamide (HC) and other chemicals have been used to eliminate or to reduce chilling requirements of peaches grown under the warm desert conditions. HC applied at “pink bloom” stage was observed to reduce the number of open blooms in `Florda Prince' peach; therefore, it was first used for blossom thinning in this cultivar in Arizona. Later, HC was also found to be an effective blossom thinner for plums in Idaho. HC has recently been found to effectively thin apple and peach blossoms. Armothin has also been an effective blossom thinner for peach in California.


1993 ◽  
Vol 73 (3) ◽  
pp. 847-855 ◽  
Author(s):  
H. A. Quamme ◽  
R. T. Brownlee

Early performance (6–8 yr) of Macspur McIntosh, Golden Delicious, and Spartan apple (Malus domestica Borkh.); Fairhaven peach [Prunus persica (L.) Batsch.]; Montmorency sour cherry (P. cerasus L.); and Lambert sweet cherry (P. avium L.) trees, tissue cultured (TC) on their own roots, was compared with that of the same cultivars budded on commercially used rootstocks. TC trees of all apple cultivars were similar in size to trees budded on Antonovka seedling or M.4 and exceeded the size of trees budded on M.26. They were delayed in flowering and in cropping compared with trees budded on M.26 and M.4. No difference in titratable acidity, soluble solids, flesh firmness, weight, flavor, and color between fruit from TC trees and from trees on M.4 and Antonovka seedlings was detected in 1 yr of measurement. However, fruit from TC Golden Delicious was more russeted and fruit from TC Spartan had more soluble solids. The difference in fruit appearance between TC and budded trees may result from a root-stock effect or a difference in budwood source, because Spartan fruit from trees on M.4 was more russeted than Spartan fruit from TC trees, but was not different from Spartan fruit from trees on Antonovka seedling. Trees of Macspur McIntosh on TC M.26 and on stool-layered M.26 were similar in size and yield efficiency. TC Fairhaven was larger in size than Fairhaven on Siberian C seedling, but was less yield efficient. No difference in fruit size, flesh firmness, or color was detected between fruit harvested from peach trees on the different roots. Montmorency and Lambert TC and on F12/1 were similar in tree size, respectively, but Montmorency and Lambert TC were more yield efficient than on F12/1. Fruit of TC Lambert was lighter in color and had higher titratable acidity than that of Lambert on F12/1, perhaps a result of earlier fruit maturity. Key words: Apple, peach, sweet cherry, sour cherry, self-rooted, rootstocks


2009 ◽  
Vol 185 (4) ◽  
pp. 917-930 ◽  
Author(s):  
Shenghua Fan ◽  
Douglas G. Bielenberg ◽  
Tetyana N. Zhebentyayeva ◽  
Gregory L. Reighard ◽  
William R. Okie ◽  
...  

2017 ◽  
Vol 52 (11) ◽  
pp. 1006-1016 ◽  
Author(s):  
Paula Duarte de Oliveira ◽  
Gilmar Arduino Bettio Marodin ◽  
Gustavo Klamer de Almeida ◽  
Mateus Pereira Gonzatto ◽  
Daniel Chamorro Darde

Abstract: The objective of this work was to evaluate the effect of shoot heading and of hand thinning in different development stages of flowers and fruits on the fruit production and quality of 'BRS Kampai' peach (Prunus persica) trees. The experiment was performed during three crop years, under the conditions of the “Depressão Central” region in the state of Rio Grande do Sul, Brazil, and the treatments were: T1, heading of half of the mixed shoot; T2, heading of one third of the mixed shoot; T3, flower thinning in the pink bud stage; T4, thinning at full bloom; T5, thinning of fruit with 5 mm; T6, thinning of fruit with 20 mm; and T7, no thinning or heading (control). Fruit production and quality were evaluated. Plants with no thinning were more productive, but showed high frequency of fruits with a diameter smaller than 60 mm. Shoot heading reduced production per tree and resulted in small-sized fruit. Thinning time did not affect production, and fruit size was greater when thinning was performed at the bloom stage. 'BRS Kampai' peach trees can be thinned starting at bloom, which provides greater fruit size, with no production loss.


2016 ◽  
Vol 104 ◽  
pp. 54-70 ◽  
Author(s):  
Ming-Yue Sun ◽  
Xi-Ling Fu ◽  
Qiu-Ping Tan ◽  
Li Liu ◽  
Min Chen ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Noémie Vimont ◽  
Mathieu Fouché ◽  
José Antonio Campoy ◽  
Meixuezi Tong ◽  
Mustapha Arkoun ◽  
...  

Abstract Background Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production. Recent work highlighted physiological and molecular events occurring during bud dormancy in trees. However, they usually examined bud development or bud dormancy in isolation. In this work, we aimed to further explore the global transcriptional changes happening throughout bud development and dormancy onset, progression and release. Results Using next-generation sequencing and modelling, we conducted an in-depth transcriptomic analysis for all stages of flower buds in several sweet cherry (Prunus avium L.) cultivars that are characterized for their contrasted dates of dormancy release. We find that buds in organogenesis, paradormancy, endodormancy and ecodormancy stages are defined by the expression of genes involved in specific pathways, and these are conserved between different sweet cherry cultivars. In particular, we found that DORMANCY ASSOCIATED MADS-box (DAM), floral identity and organogenesis genes are up-regulated during the pre-dormancy stages while endodormancy is characterized by a complex array of signalling pathways, including cold response genes, ABA and oxidation-reduction processes. After dormancy release, genes associated with global cell activity, division and differentiation are activated during ecodormancy and growth resumption. We then went a step beyond the global transcriptomic analysis and we developed a model based on the transcriptional profiles of just seven genes to accurately predict the main bud dormancy stages. Conclusions Overall, this study has allowed us to better understand the transcriptional changes occurring throughout the different phases of flower bud development, from bud formation in the summer to flowering in the following spring. Our work sets the stage for the development of fast and cost effective diagnostic tools to molecularly define the dormancy stages. Such integrative approaches will therefore be extremely useful for a better comprehension of complex phenological processes in many species.


Sign in / Sign up

Export Citation Format

Share Document