scholarly journals Rooting and Lateral Shoot Elongation of Verbena Following Benzylaminopurine Application

HortScience ◽  
1991 ◽  
Vol 26 (4) ◽  
pp. 391-392 ◽  
Author(s):  
Sven E. Svenson

Rooting and growth of Verbena cuttings (Verbena × hybrids Voss) were measured to determine response to foliar-applied benzylaminopurine (BA). There was no rooting response to BA application when visible nodal roots were present at the base of the cutting. There was no response to 30, 100, or 300 mg BA/liter applied to the foliage 48 or 96 hours after excision from the stock plant. Rooting-zone dry mass, total cutting dry mass, and number of roots were increased by 30 mg BA/liter applied immediately after excision when there were no visible nodal roots at the base of the cuttings. Foliar application of BA at 10 or 30 mg·liter-1 increased lateral bud elongation of subsequently rooted shoots by 20% and 49%, respectively. Application of BA during cutting propagation to enhance subsequent lateral bud elongation does not appear to inhibit rooting in Verbena stem cuttings. Chemical name used: 6-benzylaminopurine (BA).

1986 ◽  
Vol 16 (2) ◽  
pp. 211-221 ◽  
Author(s):  
J. N. Owens ◽  
J. E. Webber ◽  
S. D. Ross ◽  
R. P. Pharis

The anatomy, mitotic frequency, size, and total insoluble carbohydrate histochemistry was studied in axillary apices from 9- and 10-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) trees after cone induction treatments of root-pruning and (or) stem injections of a gibberellin A4 and A7 (GA4/7) mixture. Axillary buds were initiated at the time of root-pruning, but root-pruning treatment had no effect on axillary bud initiation. Axillary apices from control and gibberellin-treated trees were similar and followed the normal sequence of bud-scale initiation, differentiation, and leaf initiation (described previously) and no cone buds differentiated. Early development of axillary apices from root-pruned and root-pruned, gibberellin-treated trees was normal, but development became retarded near the time of vegetative bud flush. Retarded apices were small with low mitotic frequency and developed many features characteristics of latent apices. Retardation of axillary apices continued until mid-July when normal development resumed and apices differentiated into reproductive buds or vegetative buds, or became latent. The trees in which the greatest retardation of apical development occurred during lateral shoot elongation produced the most cone buds. These results are discussed in relation to hypotheses proposed to explain how cultural and gibberellin treatments affect cone induction in the Pinaceae.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 491e-491
Author(s):  
Darren L. Haver ◽  
Ursula K. Schuch

Ethephon was applied as a foliar spray to 36-day-old petunia seedlings to determine its effectiveness at reducing apical dominance by increasing lateral shoot development. Ethephon application at rates of 125, 250 and 500 mg·L–1 to whole shoots of Petunia × hybrida `Orchid' decreased apical dominance compared to the control. The average length of a lateral shoot increased 56% as ethephon application rates increased from 0 to 500 mg·L–1. In Expt. I, ethephon-treated plants had a greater number of laterals than control plants. The number of nodes produced before the first flower bud was initiated increased from 15 to 21 as rates of ethephon increased from 0 to 500 mg·L–1. Ethephon delayed anthesis up to 10 days when applied at 500 mg·L–1 and up to 8 days when applied at 250 mg·L–1. The number of visible flower buds increased in all ethephon-treated plants compared to the control. Ethephon at 250 mg·L–1, increased shoot and root dry mass 37.9% and 20.4%, respectively, compared to untreated controls. Roots appeared healthy in both experiments, but phytotoxicity (mild chlorosis) occurred in Expt. II on plants treated with 500 mg·L–1. The experiment was repeated twice with similar results.


1992 ◽  
Vol 117 (4) ◽  
pp. 568-570 ◽  
Author(s):  
Paul H. Henry ◽  
Frank A. Blazich ◽  
L. Eric Hinesley

Hardwood stem cuttings of eastern redcedar (Juniperus virginiana L.), taken from containerized stock plants fertilized weekly with 0, 5, 10, 20, 40, 80, 160, 320, or 640 ppm N, were treated with 7500 ppm IBA and placed under intermittent mist for 12 weeks. Foliar starch and sucrose concentrations within cuttings at time of excision were significantly correlated with percent rooting and root length, respectively. Of the mineral nutrients analyzed (N, P, K, Ca, Mg, Mn, and B), only B and K were significantly correlated with rooting response. A threshold N level (20 ppm), applied weekly, maximized rooting; higher concentrations decreased response. Although N fertilization of stock plants affected adventitious rooting, there were no significant correlations between foliar N levels and measures of rooting response. Chemical name used: 1 H- indole-3-butyric acid (IBA).


1988 ◽  
Vol 18 (1) ◽  
pp. 139-142 ◽  
Author(s):  
Rong H. Ho

Black spruce (Piceamariana (Mill.) B.S.P.) grafts growing in a seed orchard were sprayed with gibberellin A4/7, and grafts and trees in families growing in arboreta were sprayed with gibberellin A4/7 and (or) vitamin E from vegetative bud burst to the end of shoot elongation. Gibberellin A4/7 was very effective in promoting seed cones and 400 mg/L appeared optimal. Vitamin E at 1000 mg/L was not effective. Vegetative bud burst occurred in mid-May and shoot elongation ended in late June. Needle primordia were visible on the apices of newly formed buds at the end of June. Reproductive buds had fewer bud scales than vegetative buds. It appeared that potential reproductive buds terminated their bud scale initiation earlier. Gibberellin A4/7 application to promote seed-cone production should be carried out before bud-type differentiation. This coincides with the end of lateral shoot elongation.


1991 ◽  
Vol 9 (2) ◽  
pp. 83-85
Author(s):  
William H. Rein ◽  
Robert D. Wright ◽  
Dale D. Wolf

Abstract Containerized stock plants of Ilex crenata Thunb. ‘Rotundifolia’ were liquid-fertilized at least three times per week with nitrogen (N) at five rates (25, 50, 100,200, and 300 mg N/l) and in two forms (100% NH4NO3 or 50% NH4NO3 + 50% urea) in a factorial treatment design. Phosphorus and potassium were included in a constant ratio with N (100 N:15 P:50 K). Leaf and stem percent N levels were suboptimal at the lowest fertilizer rate and excessive at the highest fertilizer rate. Percent rooting of stem cuttings decreased linearly with fertilizer rate. With increasing fertilizer rates, total nonstructural carbohydrate (TNC) levels increased in leaves and remained constant in stems. Stem cutting percent moisture increased and was highly correlated with fertilizer rate. The form of N applied made no statistical difference in these trends. The decrease in percent rooting with increasing fertilizer rates was attributed to increases in shoot growth activity and decreased tissue maturation.


2018 ◽  
Vol 12 (2) ◽  
pp. 508-513
Author(s):  
Erik Nunes Gomes ◽  
Marília Pereira Machado ◽  
José Miola ◽  
Cícero Deschamps

Hop (Humulus lupulus L.) is a plant with economic importance due to its use in the brewing industry. The cones produced by the species contain the main substances responsible for the beer’s bitterness and aroma. Hop plants cultivation in Brazil is still incipient and information on efficient methods for its propagation in this context are scarce. The objective of the present study was to evaluate the effect of different leaf areas (two whole leaves, two leaves in half, one whole leaf, one leaf in half and without leaves) in herbaceous stem cuttings planted in environments with and without intermittent misting. The experiment was conducted in a greenhouse in Curitiba-PR, Brazil (25º25’40 “S and 49º16’23” W). After 30 days of planting, the survival, rooting, sprouting and leaf retention percentages, roots number, average roots length and roots and sprouts dry mass were evaluated. Cuttings with one or two whole leaves and two leaves in half in the misting environment showed the highest rooting percentages (between 90.0 and 97.5%). In the without misting environment, the highest values were observed in cuttings with one or two leaves in half and one whole leaf (between 62.5 and 72.5%). Leafless cuttings had low survival percentages (2.5% in both environments). Under intermittent misting conditions it is recommended to prepare stem cuttings with one or two whole leaves and, in the absence of control over the environment humidity, cuttings with one whole leaf are recommended.


1985 ◽  
Vol 15 (4) ◽  
pp. 618-624 ◽  
Author(s):  
Stephen D. Ross

Young, potted grafts ofPiceaengelmannii were moved into a 30:20 °C (day:night) heated polyethylene house at different stages of lateral shoot elongation; and there they were subjected to low, moderate, or severe drought stress with and without branch applications of gibberellin A4/7 (GA4/7). The critical time for promoting flowering by high temperature was the late stage of slow shoot elongation, whereas for drought it was during early and rapid shoot growth. Each treatment inhibited flowering at the time the other was maximally effective and the effective treatment period for GA4/7 appeared to include that both for high temperature and drought. In contrast to drought, optimally timed heat treatment did not retard shoot elongation, nor did it result in a decreased needle water potential relative to well-watered grafts outdoors. It appears that heat and drought promote flowering through different mechanisms, albeit mechanisms which may be mediated, at least in part, through their influence on gibberellin metabolism. Advantages of indoor-potted orchards over conventional soil-based orchards for accelerating the breeding and production of genetically improved P. engelmannii seeds are discussed.


2004 ◽  
Vol 22 (2) ◽  
pp. 55-57
Author(s):  
Jason J. Griffin ◽  
Kenneth R. Schroeder

Abstract Stem cuttings of Ulmus parvifolia Jacq. ‘Emerald Prairie’ (‘Emerald Prairie’ lacebark elm), consisting of 7.5 to 10 cm (3 to 4 in) terminal shoot portions, were collected four times throughout the year from mature stock plants and treated with the potassium (K) salt of indole-3-butyric acid (K-IBA) ranging from 0 to 20,000 ppm (2.0%). Rooting percentages were affected greatly by K-IBA treatment and stock plant growth stage. Little to no rooting was observed without K-IBA application, whereas overall rooting for treated softwood, early semi-hardwood, late semi-hardwood, and hardwood, cuttings was 92, 86, 87, and 8%, respectively. Mean root number varied by growth stage and K-IBA concentration. Higher concentrations of K-IBA increased the number of roots on rooted cuttings except for hardwood cuttings. In general, rooting percentage and mean root number were highest at the softwood stage with 15,000 or 20,000 ppm (1.5 or 2.0%) K-IBA, resulting in 97% rooting and 15 or 22 roots per rooted cutting, respectively. However, leaf abscission was high on softwood cuttings. Semi-hardwood cuttings achieved similar rooting percentages and may exhibit better survival and growth due to greater leaf retention.


2019 ◽  
Vol 11 (18) ◽  
pp. 230
Author(s):  
Walquíria F. Teixeira ◽  
Evandro B. Fagan ◽  
Luís H. Soares ◽  
Klaus Reichardt ◽  
Leidyanne G. Silva ◽  
...  

Due to the importance of soybeans worldwide, there is a constant search for products or management systems that aim to increase the productivity of this crop. In this sense, some products that have amino acids in their composition have been used, however, there is still a lack of studies that aim to show the isolated effect of amino acids on growth parameters. Therefore, the present study aimed to evaluate the effect of the application of amino acids in the treatment of seeds and of the leaf in the soybean crop. Experiments were carried out in a greenhouse and in the field with the application of glutamate, phenylalanine, cysteine, glycine as a seed treatment (ST) and also as foliar application (FA) at the V4 growth stage. The dry mass accumulation of root, stem, leaves, total and yield of a soybean crop were evaluated. In addition, leaf element concentration in leaves was also evaluated. The use of phenylalanine in ST promoted the best results on stem mass, leaves, pods and total dry mass, with an increase of up to 152%, as compared to control. This same treatment led to higher productivity, with a 46% increase in relation to the control. In relation to foliar concentration of elements, the most effective application is the one that is carried out in both modes of application (ST and FA), mainly with glutamate and glycine. Therefore, the application of amino acids, especially in seed treatment promotes the greater accumulation of dry mass and productivity in soybean plants.


Sign in / Sign up

Export Citation Format

Share Document