scholarly journals 673 PB 151 MOLECULAR MARKERS FOR FRUIT COLOR IN APPLE (MALUS X. DOMESTICA)

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 529c-529
Author(s):  
Frank Cheng ◽  
Norman Weeden ◽  
Susan Brown

The ability to pre-screen apple populations for fruit color at an early seedling stage would be advantageous. In progeny of the cross `Rome Beauty' × `White Angel' red/yellow color variation was found to be highly correlated with the genotype at Idh-2, an isozyme locus that was heterozygous in both parents. We postulate that the red/yellow color variation was produced by a single gene linked to I&-2 and also heterozygous in both parents. This population was also screened with over 400 primers to detect randomly amplified polymorphic (RAPD) markers for fruit color. DNA extraction procedures were developed for bark, and DNA was extracted from bark samples and leaves. Red and yellow fruited individuals were examined in bulk. Several markers have been found that are linked to red color. A high density map is being constructed in this region. These markers are being examined in other crosses segregating for fruit color. The application of these markers will be discussed in relation to the inheritance and manipulation of fruit color.

2019 ◽  
Author(s):  
So-Jeong Jang ◽  
Hyo-Bong Jeong ◽  
Ayoung Jung ◽  
Min-Young Kang ◽  
Suna Kim ◽  
...  

AbstractPhytoene synthase 1 (PSY1) and Capsanthin-capsorubin synthase (CCS) are two major genes responsible for fruit color variation in pepper (Capsicum spp.), although fruit colors cannot be explained by variations in these two genes alone. Furthermore, the role of PSY2 in fruit color development in pepper is unknown. Here, we used a systemic approach to discover the genetic factors responsible for the yellow fruit color of C. annuum ‘MicroPep Yellow’ (MY) and to reveal the role of PSY2 in fruit color. We detected a complete deletion of PSY1 and a retrotransposon insertion in CCS in MY. Despite the loss of PSY1 and CCS function, the MY and mutant F2 plants from a cross between MY and the MicroPep Red (MR) accumulated basal levels of carotenoids, indicating that other PSY genes may complement the loss of PSY1. A qRT-PCR analysis demonstrated that PSY2 is constitutively expressed in both MR and MY fruits, and a color complementation assay using Escherichia coli revealed that PSY2 is capable of biosynthesizing a carotenoid. Virus-induced gene silencing of PSY2 in MY resulted in white fruits. These findings suggest that PSY2 can compensate for the absence of PSY1 in fruit, resulting in the yellow color of MY fruits.HighlightWe reveal the novel function of PSY2 in the development of yellow pepper fruit coloration using a psy1 knockout mutant. This gene function was not previously identified in solanaceous crops.


2020 ◽  
Vol 71 (12) ◽  
pp. 3417-3427 ◽  
Author(s):  
So-Jeong Jang ◽  
Hyo-Bong Jeong ◽  
Ayoung Jung ◽  
Min-Young Kang ◽  
Suna Kim ◽  
...  

Abstract Phytoene synthase 1 (PSY1) and capsanthin-capsorubin synthase (CCS) are two major genes responsible for fruit color variation in pepper (Capsicum spp.). However, the role of PSY2 remains unknown. We used a systemic approach to examine the genetic factors responsible for the yellow fruit color of C. annuum ‘MicroPep Yellow’ (MY) and to determine the role of PSY2 in fruit color. We detected complete deletion of PSY1 and a retrotransposon insertion in CCS. Despite the loss of PSY1 and CCS function, both MY and mutant F2 plants from a cross between MY and the ‘MicroPep Red’ (MR) accumulated basal levels of carotenoids, indicating that other PSY genes may complement the loss of PSY1. qRT-PCR analysis indicated that PSY2 was constitutively expressed in both MR and MY fruits, and a color complementation assay using Escherichia coli revealed that PSY2 was capable of biosynthesizing a carotenoid. Virus-induced gene silencing of PSY2 in MY resulted in white fruits. These findings indicate that PSY2 can compensate for the absence of PSY1 in pepper fruit, resulting in the yellow color of MY fruits.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492f-493
Author(s):  
Roberto F. Vieira ◽  
James E. Simon ◽  
Peter Goldsbrough ◽  
Antonio Figueira

Essential oils extracted from basil (Ocimum spp.) by steam distillation are used to flavor foods, oral products, in fragrances, and in traditional medicines. The genus Ocimum contains around 30 species native to the tropics and subtropics, with some species naturalized and/or cultivated in temperate areas. Interand intraspecific hybridization have created significant confusion in the botanical systematics of this genus. Taxonomy of basil (O. basilicum) is also complicated by the existence of numerous varieties, cultivars, and chemotypes within the species that do not differ significantly in morphology. In this study we are using RAPD markers and volatile oil composition to characterize the genetic diversity among the most economically important Ocimum species. We hypothesize that the genetic similarity revealed by molecular markers will more accurately reflect the morphological and chemical differences in Ocimum than essential oil composition per se. Preliminary research using five Ocimum species, four undetermined species, and eight varieties of O. basilicum (a total of 19 accessions) generated 107 polymorphic fragments amplified with 19 primers. RAPDs are able to discriminate between Ocimum species, but show a high degree of similarity between O. basilicum varieties. The genetic distance between nine species and among 55 accessions within the species O. americanum, O. basilicum, O. campechianum, O. × citriodorum, O. gratissimum, O. kilimandscharium, O. minimum, O. selloi, and O. tenuiflorum will be analyzed by matrix of similarity and compared to the volatile oil profile. This research will for the first time apply molecular markers to characterize the genetic diversity of Ocimum associate with volatile oil constituent.


1998 ◽  
pp. 417-428 ◽  
Author(s):  
L. Gianfranceschi ◽  
N. Seglias ◽  
M. Kellerhals ◽  
C. Gessler

2013 ◽  
Vol 43 (6) ◽  
pp. 978-984 ◽  
Author(s):  
Vanice Dias Oliveira ◽  
Allivia Rouse Carregosa Rabbani ◽  
Ana Veruska Cruz da Silva ◽  
Ana da Silva Lédo

This research had as objective to characterize genetically individuals of physic nut cultivated in experimental areas in Sergipe, Brazil by means of RAPD molecular markers. Leaves of 40 individuals were collected and DNA was isolated using CTAB 2% method. Were used 30 primers RAPD for DNA amplification, and this data was used to estimate the genetic similarity among the pairs of individuals, using Jaccard coefficient, and group them out for the UPGMA method. Also, the genetic structure and diversity of the populations were assessed using AMOVA. Of the 100 fragments generated, 29 of were polymorphic. A similarity average of 0.54 among the individuals was found and the amplitude similarities varied from 0.18 to 1.00. One of them (U5) was unit clusters and formed by the most divergent individuals. AMOVA indicated that there is more variation within (63%) the population. In conclusion, it was possible verify genetic variability in physic nut using RAPD markers at these experimental areas.


2017 ◽  
Author(s):  
Meng Wu ◽  
Jamie L. Kostyun ◽  
Matthew W. Hahn ◽  
Leonie Moyle

ABSTRACTPhylogenetic analyses of trait evolution can provide insight into the evolutionary processes that initiate and drive phenotypic diversification. However, recent phylogenomic studies have revealed extensive gene tree-species tree discordance, which can lead to incorrect inferences of trait evolution if only a single species tree is used for analysis. This phenomenon—dubbed “hemiplasy”—is particularly important to consider during analyses of character evolution in rapidly radiating groups, where discordance is widespread. Here we generate whole-transcriptome data for a phylogenetic analysis of 14 species in the plant genus Jaltomata (the sister clade to Solanum), which has experienced rapid, recent trait evolution, including in fruit and nectar color, and flower size and shape. Consistent with other radiations, we find evidence for rampant gene tree discordance due to incomplete lineage sorting (ILS) and several introgression events among the well-supported subclades. Since both ILS and introgression increase the probability of hemiplasy, we perform several analyses that take discordance into account while identifying genes that might contribute to phenotypic evolution. Despite discordance, the history of fruit color evolution in Jaltomata can be inferred with high confidence, and we find evidence of de novo adaptive evolution at individual genes associated with fruit color variation. In contrast, hemiplasy appears to strongly affect inferences about floral character transitions in Jaltomata, and we identify candidate loci that could arise either from multiple lineage-specific substitutions or standing ancestral polymorphisms. Our analysis provides a generalizable example of how to manage discordance when identifying loci associated with trait evolution in a radiating lineage.


Author(s):  
Franci Štampar ◽  
Jan Bizjak ◽  
Robert Veberič ◽  
Jerneja Jakopič

The red color of skin is a much desired property in apple production. For better red fruit coloration the applications of foliar fertilizers on the basis of calcium and phosphorus are used. In the present study ‘Braeburn’ apple trees were sprayed twice with Phostrade Ca (phosphorus), 5 and 3 weeks before harvest. In 7-days intervals fruit color, the content of flavonoids and enzyme activity involved in the synthesis of anthocyanins have been monitored. Foliar application of Phostrade Ca caused a more intense red skin color of apples and higher anthocyanin content. Their level increased during ripening, in treated apples the content of total anthocyanins was 20-fold higher at harvest while in control apples only 9-fold higher compared to the initial values. Cyanidin 3-galactoside was the most abundant anthocyanin (80 to 86% of total anthocyanins), followed by cyanidin 3-arabinoside, cyanidin 3-glucoside, cyanidin 3-xyloside and cyanidin 7-arabinoside. Prostrade Ca increased the levels of all quercetin glycosides, with the exception of quercetin 3-rhamnoside. No significant influence of Phostrade Ca on the content of hydroxycinnamic acids, dihydrochalcones, flavanols and total phenolics has been monitored. The activity of FHT and DFR increased during ripening but Phostrade Ca influenced only higher activity of DFR.


1994 ◽  
Vol 119 (5) ◽  
pp. 1073-1082 ◽  
Author(s):  
Antonio Figueira ◽  
Jules Janick ◽  
Morris Levy ◽  
Peter Goldsbrough

Genetic similarities among eight Theobroma and two Herrania species, including 29 genotypes of T. cacao, were estimated by rDNA polymorphism. A phenogram based on these genetic similarities significantly separated two clusters: one cluster included all Herrania and Theobroma species, except T. cacao, while the second contained 28 of 29 T. cacao genotypes. There was no clear distinction between Herrania and Theobroma species. Separation of 29 T. cacao genotypes, representing all races and various origins, had no congruency with the conventional classification into three horticultural races: Criollo, Forastero, and Trinitario. Genetic similarities in T. cacao, estimated with RAPD markers, indicated continuous variation among the generally similar but heterogeneous genotypes. The wild genotypes formed an outgroup distinct from the cultivated genotypes, a distinction supported by the rDNA data. The phenograms constructed from RAPD and rDNA data were not similar within the wild and cultivated cacao subsets.


Author(s):  
Daniel A. Brinton ◽  
Charles P. Wilkinson

The differential diagnosis of rhegmatogenous retinal detachment includes secondary (nonrhegmatogenous) retinal detachment and other entities that may simulate a retinal detachment. Nonrhegmatogenous detachments are categorized as exudative (serous) and tractional detachments. Conditions that may be mistaken for retinal detachment include retinoschisis, choroidal detachment or tumors, and vitreous membranes. Sometimes benign findings in the peripheral retina are mistaken for retinal breaks. The most prominent feature of the fundus is the optic nerve head or disc, the only place in the human body that affords a direct view of a tract of the central nervous system. The foveola, the functional center of the fundus, is located in the center of the fovea, which has a diameter of about 5°. The macula is centered on the fovea and has a diameter of about 17°. The multiple branches of the central retinal artery are readily identifi ed by their bright red color and relatively narrow caliber. The multiple tributaries of the central retinal vein are recognized by their dark red color and relatively wider caliber. In a darkly pigmented fundus, the choroidal vessels in the posterior pole can be obscured from view, but in an eye with minimal pigment, they are readily visible. The venous tributaries of the choroid that make up the vortex veins are usually easily seen. The most prominent features of the choroidal venous system are the vortex ampullae, of which there are usually four (but sometimes more). They are located approximately in the 1-, 5-, 7-, and 11-o’clock meridians, just posterior to the equator. The horizontal meridians are usually identifiable by their radially oriented, long posterior ciliary nerves, and infrequently the long posterior ciliary artery can be seen adjacent to the nerve. The nerve is relatively broad and has a yellow color, and the artery is identifiable by its red color. The artery is usually inferior to the nerve temporally, and superior to it nasally (Figure 5–1).


2017 ◽  
Vol 52 (11) ◽  
pp. 1118-1122 ◽  
Author(s):  
Alberto Fontanella Brighenti ◽  
Douglas André Würz ◽  
Mateus da Silveira Pasa ◽  
Leo Rufato

Abstract: The objective of this work was to investigate the effect of plant growth regulators for enhancing fruit color of 'Gala Standard' apples (Malus domestica). The experiment was carried out in the 2015 and 2016 crop seasons. The treatments consisted of water, as a control; 300 mg L-1 ethephon, as a positive control; 400 mg L-1 prohydrojasmonate; and 400 mg L-1 abscisic acid. Flesh firmness, soluble solids content, fruit weight, and red color were assessed after harvest. Plant growth regulators enhanced red color of fruit and chlorophyll degradation. Prohydrojasmonate and abscisic acid did not reduce flesh firmness, in the 2016 season.


Sign in / Sign up

Export Citation Format

Share Document