scholarly journals 829 PB 311 WETTING AGENT EFFECTS ON TURF SOIL-WATER REPELLENCY

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 552b-552
Author(s):  
John L. Cisar ◽  
Karen E. Williams

Soil-water repellency is often a problem for turfgrass grown on sand soils. Wetting agents used to alleviate repellency often provide mixed results. We evaluated AquagroL and an experimental material (ACA 864) at 0, 7, 14, and 21ml/m2 applied monthly to tifgreen bermuda grown on a soil-water repellent Margate fine sand over 6 months. Alleviation of repellency was based upon water drop penetration time (WDPT). Wetting agents did not effect turf quality, cover, or discoloration. Wetting agents did not reduce repellency 1 month after initial application. At 2 months, ACA 864 at 21ml/m2 significantly reduced WDPT. With repeat applications, lower rates of ACA 864 provided reductions in WDPT similar to the highest rate of ACA 864, suggesting an additive effect over time. There was a decline in WDPT for all wetting agent treatments, except the control, over time. Repellency decreased with soil depth, and repeat wetting agent application reduced WDPT at lesser depth.

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2577
Author(s):  
Enzhan Song ◽  
Keith W. Goyne ◽  
Robert J. Kremer ◽  
Stephen H. Anderson ◽  
Xi Xiong

Repeated application of soil surfactants, or wetting agents, is a common practice for alleviating soil water repellency associated with soil organic coatings. However, wetting agents are organic compounds that may also coat soil particle surfaces and reduce wettability. For this experiment, hydrophobic sands from the field and fresh, wettable sands were collected and treated with either a polyoxyalkylene polymer (PoAP) or alkyl block polymer (ABP) wetting agent, or water only treatments served as a control. Following repeated treatment application and sequential washings, dissolved and particulate organic carbon (OC) were detected in the leachates of both sand systems. The total amount of OC recovered in leachates was 88% or less than the OC introduced by the wetting agents, indicating sorption of wetting agent monomers to soil particle surfaces regardless of soil hydrophobicity status. While ABP treatment did not alter solid phase organic carbon (SOC) in the sands studied, PoAP application increased SOC by 16% and 45% which was visible in scanning electronic microscopy images, for hydrophobic and wettable sands, respectively. PoAP application also increased the hydrophobicity of both sands that were studied. In contrast, ABP treatment increased the wettability of hydrophobic sand. Our results provide strong evidence that certain wetting agents may increase soil hydrophobicity and exacerbate wettability challenges if used repeatedly over time.


2019 ◽  
Vol 11 (16) ◽  
pp. 4505 ◽  
Author(s):  
Enzhan Song ◽  
Xiaowei Pan ◽  
Robert J. Kremer ◽  
Keith W. Goyne ◽  
Stephen H. Anderson ◽  
...  

Wetting agents are the primary tool used to control soil water repellency (SWR) and localized dry spot (LDS), especially on sand-based soils. However, the effect of repeated applications of wetting agents on soil microbial populations is unknown. This two-year field experiment investigated six wetting agents representing different chemistry effects on a creeping bentgrass (Agrostis stolonifera L.) putting green with existing SWR. Four out of the six wetting agents improved soil volumetric water content in the second growing season, while others showed no effect. This result was negatively correlated to the development of LDS, and positively correlated to occurrence of an air-borne turf disease. Soil microbial populations, determined by soil phospholipid fatty acid (PLFA) analysis, found that none of the treatments applied caused a shift in microbial populations between fungi and bacteria, or gram-positive and gram-negative bacteria. The stress indicators such as saturated to mono-unsaturated fatty acids were not affected by the wetting agents applied as well. However, the wetting agent that contains alkyl block polymers (ABP; Matador) with proven capability for removal of soil organic coatings showed inhibition of microbial populations at one evaluation timing. This result suggested a temporary restriction in soil carbon availability for soil microorganisms following repeated ABP application, which likely contributed to the elevated LDS development observed. Another wetting agent, a combined product of a nonionic surfactant plus acidifiers (NIS; pHAcid), which is designed to reduce inorganic carbonates while enhancing wetting, elevated all soil microbial populations tested at the end of the experiment, indicating a desirable improvement in soil health. However, repeated application of NIS did not reduce SWR at the conclusion of this experiment, which, in combination with a previous report, suggested a minimal disturbance of soil organic coatings of the hydrophobic sand. Overall, this experiment suggested that soil microbial populations can be affected by wetting agents which may further influence SWR, yet the actual effect on soil microorganisms varies depending on the chemistry of the wetting agents.


Author(s):  
Vincenzo Bagarello ◽  
Giuseppe Basile ◽  
Gaetano Caltabellotta ◽  
Giuseppe Giordano ◽  
Massimo Iovino

The water drop penetration time (WDPT) technique was applied in 2018 to check persistence of soil water repellency (SWR) in a Sicilian mountain area affected by a wildfire on June 2016. A total of four sites, that were severely water repellent immediately after burning, were sampled. Depending on the site, wettable soil conditions, less SWR and maintenance of a noticeable SWR were detected two years later. At the site showing a near-constant SWR, WDPTs were particularly high in the top soil layer (0-0.03 m) and they appreciably decreased more in depth. Signs of decreasing SWR in drier soil conditions and in association with coarser soil particles were also detected at this site. High gradients of the WDPT can occur at very small vertical distances and a depth increment of approximately 0.01 m should be appropriate to capture small-scale vertical changes in SWR, especially close to the soil surface. Occurrence of SWR phenomena is easily perceivable and explainable if an inverse relationship between WDPTs and antecedent soil water content is obtained. A direct relationship between these two variables is more difficult to interpret because infiltration times that increase in wetter soil are expected according to the classical infiltration theory. A hypothesis that should be tested in the future is to verify if WDPTs that decrease in drier soil conditions signal less SWR as a consequence of a reduced biological activity of the soil. Finally, long-term monitoring projects on longevity of fire effects on SWR should be developed, even because an in depth knowledge of the involved processes is relevant for the civil protection system.


1983 ◽  
Vol 13 (2) ◽  
pp. 353-355 ◽  
Author(s):  
G. S. Henderson ◽  
D. L. Golding

Soil from 10 slash burned and 3 unburned clear-cuts was tested for water repellency by the water drop penetration method and compared with naturally occurring soil water repellency in uncut mature forest. There was no difference in soil water repellency between unburned clear-cuts and the uncut forest control. Soil was more frequently water repellent in slash burned sites (35% of samples) than in the control sites (21% of samples), but differences were significant only for the first 2 years after burning. All humus samples were severely water repellent. At the 0- to 4-cm depth below the humus, burned samples were more frequently repellent than control samples, but there was no difference at the 8- to 10-cm and 15+ cm depths. Water repellence decreased with depth in both burned and control sites.


2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


2017 ◽  
Author(s):  
Emilia Urbanek ◽  
Stefan H. Doerr

Abstract. Soil CO2 emissions are strongly dependent on water distribution in soil pores, which in turn can be affected by soil water repellency (SWR; hydrophobicity). SWR restricts infiltration and movement of water, affecting soil hydrology as well as biological and chemical processes. Effects of SWR on soil carbon dynamics and specifically on soil respiration (CO2 efflux) have been studied in a few laboratory experiments but they remain poorly understood. Existing studies suggest that soil respiration is reduced in water repellent soils, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known. Here we report on the first field-based study that tests whether soil water repellency indeed reduces soil respiration, based on in situ field measurements carried out over three consecutive years at a grassland and pine forest site under the humid temperate climate of the UK. CO2 efflux was reduced on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. However, the highest respiration rates occurred not when SWR was absent, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. This somewhat surprising phenomenon can be explained by SWR-induced preferential flow, directing water and nutrients to microorganisms decomposing organic matter concentrated in hot spots near preferential flow paths. Water repellent zones provide air-filled pathways through the soil, which facilitate soil-atmosphere O2 and CO2 exchanges. This study demonstrates that SWR have contrasting effects on CO2 fluxes and, when spatially-variable, can enhance CO2 efflux. Spatial variability in SWR and associated soil moisture distribution needs to be considered when evaluating the effects of SWR on soil carbon dynamics under current and predicted future climatic conditions.


2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S155-S164 ◽  
Author(s):  
N.A Wahl

Soil water repellency has important consequences for ecological and hydrological properties of soils and usually retards infiltration capacity and induces preferential flow. This phenomenon has been known to occur on a wide range of sites under a variety of climatic conditions. The objective of this study was to investigate and characterize soil water repellency on forest sites with identical substrate and climatic conditions, differing in tree age and species. In the Vester Torup Klitplantage, an area comprising a conifer dominated forest plantation stocking on sandy deposits in a coastal setting near the Jammer Bay in north-western Jutland/Denmark, four different forest plots were investigated for water repellency effects four times in 2005. To measure soil water repellency, the water drop penetration time test and the critical surface tension test were carried out. Both tests revealed a seasonal variability in water repellency, exhibiting the highest water repellency for the upper 10 cm of the soil during the summer months, whereas the variability between the different plots seems to be less significant. There was no coherence between humus forms, thickness of litter layer and water repellency.


2020 ◽  
Author(s):  
Felix Abayomi Ogunmokun ◽  
Rony Wallach

<p>Soil water repellency is a common feature of dry soils under permanent vegetation and drought conditions. Soil-water hydrology is markedly affected by soil-water repellency as it hinders infiltration, leading to enhanced surface runoff and soil erosion. Although this phenomenon was primarily ascribed to sandy soils, it has been observed in loam, clay, and peat soils in dry and humid regions. One detrimental effect of soil water repellency on plants is the reduction of soil water availability that stems from the non-uniform water retention and flow in preferential pathways (gravity-induced fingers) with relatively dry soil volume among these paths. It was recently discovered that prolonged irrigation with treated wastewater, a widely used alternative in Israel and other Mediterranean countries due to the limited freshwater, triggers soil water repellency which invariably resulted in preferential flow development in the field. Due to climate change events, the use of treated wastewater for irrigation as a means of freshwater conservation is expected to widen, including in countries that are not considered dry.</p><p>While a vast amount of research has been devoted to characterizing the preferential flow in water repellent soils, the effect of this flow regime on the spatial distribution of salt and fertilizers in the root zone was barely investigated. Results from a commercial citrus orchard irrigated with treated wastewater that includes the spatial and temporal distribution of preferential flow in the soil profile measured by ERT will be demonstrated. The associated spatial distribution of salinity, nitrate, phosphate, and SAR in the soil profile will be shown as well.  We investigated the efficacy of two nonionic surfactants application to remediate hydrophobic sandy soils both in the laboratory and field. The effect of the surfactant application to the water repellent soils in the orchards on the spatial distribution of soil moisture and the associated agrochemicals will be presented and discussed.</p>


Soil Research ◽  
2015 ◽  
Vol 53 (2) ◽  
pp. 168 ◽  
Author(s):  
L. L. Walden ◽  
R. J. Harper ◽  
D. S. Mendham ◽  
D. J. Henry ◽  
J. B. Fontaine

There is an increasing interest in eucalypt reforestation for a range of purposes in Australia, including pulp-wood production, carbon mitigation and catchment water management. The impacts of this reforestation on soil water repellency have not been examined despite eucalypts often being associated with water repellency and water repellency having impacts on water movement across and within soils. To investigate the role of eucalypt reforestation on water repellency, and interactions with soil properties, we examined 31 sites across the south-west of Western Australia with paired plots differing only in present land use (pasture v. plantation). The incidence and severity of water repellency increased in the 5–8 years following reforestation with Eucalyptus globulus. Despite this difference in water repellency, there were no differences in soil characteristics, including soil organic carbon content or composition, between pasture and plantation soils, suggesting induction by small amounts of hydrophobic compounds from the trees. The incidence of soil water repellency was generally greater on sandy-surfaced (<10% clay content) soils; however, for these soils 72% of the pasture sites and 31% of the plantation were not water repellent, and this was independent of measured soil properties. Computer modelling revealed marked differences in the layering and packing of waxes on kaolinite and quartz surfaces, indicating the importance of interfacial interactions in the development of soil water repellency. The implications of increased water repellency for the management of eucalyptus plantations are considered.


Sign in / Sign up

Export Citation Format

Share Document