scholarly journals Growth Response of Apple Fruit to NAA and Accel: Effect of Intraspur Competition and Position on a Spur

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 765D-765
Author(s):  
Brent L. Black ◽  
Martin J. Bukovac ◽  
Matej Stopar

Apple fruit size is influenced by position on the spur, and location and number of competing fruits. King fruit appear to have the greatest potential to size and grow best in the absence of intraspur fruit competition (ISFC). Accel (A) and NAA (N), commercial thinning chemicals, influence fruit size beyond their effects on crop load. A 2-year study was conducted to determine the effect of ISFC and position (king, K, or lateral, L) on fruit growth in response to A and N. Branches from `Redchief Delicious' were thinned, after petal fall, to one K, one L, one K + one L, or two L fruits per spur. Whole-tree treatments of N (15 mg·liter–1), A (50 mg·liter–1, 1993; 25 mg·liter–1), and a combination (N+A) were applied at 10-mm king fruit diameter. A nontreated control was included. In 1993, N and N+A reduced fruit size only with ISFC, while A increased fruit size in the absence of ISFC. In 1994, A had no effect, but N and N+A reduced fruit growth with ISFC. In both seasons, A and N decreased the frequency of spurs bearing multiple fruit, while N+A dramatically increased number of spurs with multiple fruits (branch survey).

HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1794-1801 ◽  
Author(s):  
Martin J. Bukovac ◽  
Paolo Sabbatini ◽  
Philip G. Schwallier ◽  
Michael Schroeder

NAA and BA are important compounds for regulating crop load in apples (Malus domestica Borkh.). When used for fruit thinning, both induce abscission, but at an equivalent crop load NAA tends to reduce and BA to increase fruit size. There is a strong interaction between NAA and BA when used together on ‘Delicious’ and ‘Fuji’, leading to excessive development of pygmy and small fruit (<65 mm diameter). The combination of BA (as Promalin, 1:1 BA + GA4+7) applied at king bloom (KB) and NAAm (amide) at petal fall increased the percentage of small fruit by 3.3- or 5.1-fold compared with BA or NAAm alone. Similar results were obtained with BA (Promalin) at KB oversprayed with NAA at 10 to 12 mm king fruit diameter (KFD). When NAA was oversprayed with BA during fruitlet development, i.e., 5 to 6 mm, 10 to 12 mm, and ≈18 mm KFD, the greatest inhibition of fruit growth occurred at the 10- to 12-mm KFD stage, and there was no significant effect at 18 mm KFD. Inhibition by treatment at the 5- to 6-mm stage was intermediate and trees were overthinned. NAA + BA inhibition of fruit growth in ‘Delicious’ and ‘Fuji’ was not crop load-dependent. In all experiments, crop load (wt basis) of trees treated with NAA + BA was similar or less than of those treated with NAA or BA alone, but they produced 2.5- to 5-fold more small fruit. NAA + BA increased the number of fruit per cluster, many of which failed to fully develop. Increasing the ratio of BA to NAA from 25:15 to 125:15 mg·L−1 increased small fruit formation. The presence of GA4+7 in commercial formulations of BA (0:100, Maxcel; 10:100, Accel; 50:50, Promalin) did not significantly affect the NAA + BA response. Fruit growth was not inhibited by the NAA + BA combination in large-fruited ‘Golden Delicious’ and ‘Jonagold’ and was increased in small-fruited ‘Elstar’ and ‘Gala’ compared with the nontreated control.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 418E-419
Author(s):  
P.I. Garriz ◽  
G.M. Colavita ◽  
H.L. Alvarez

Crop load and the genetic biological carrying capacity (source–sink relationships) determine the potential for fruit size development on apple; however, the environment within which the fruit grows attenuates this potential. The effects of different crop loads on the growth pattern and the progress of maturity in apples were evaluated at the Comahue National Univ., Argentina (lat. 38 56'S long 67 59'W), during the 1998–99 growing season. Our experiment was conducted on 6-year-old `Braeburn'/Malling Merton 111 apple (Malus domestica Borkh.) trees spaced 4.0 × 2.3 m and trained to palmette leader. Treatments were 1) light crop load (LC), 2.5 fruit/cm2 trunk cross-sectional area (TCSA), 2) moderate crop load (MC), 6.5 fruit/cm2 TCSA (standard commercial crop load) and 3) high crop load (HC), minimum 8 fruit/cm2 TCSA, no fruit removed from tree. Whole trees were hand-thinned 19 days after full bloom (DAFB). Fruit diameter (FD) was taken at two weekly intervals (n = 24 per date and treatment) and maturity indexes were determined at harvest. Analysis of variance was used and mean separations were computed with Student's t test. From 38 DAFB until harvest, fruit size was significantly reduced (P < 0.01) in the HC trees, indicating that they were source-limited during growth. At 166 DAFB, FD was 7.48, 7.14, and 6.89 cm for the LC, MC and HC treatments, respectively. Adequate carbon was apparently available to support a commercial crop load since no differences were found between LC and MC trees. Crop level influenced flesh firmness; at 173 DAFB, it was significantly lower in HC trees than MC and LC trees (84.33, 92.51, and 91.57 N, respectively). These results suggest some goals of thinning for ensuring sizable `Braeburn' fruit.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 513c-513 ◽  
Author(s):  
Martin J. Bukovac ◽  
Jerome Hull ◽  
John C. Neilsen ◽  
Michael Schroeder ◽  
Georg Noga

NAA is used extensively for fruit thinning of apples to increase fruit size and to promote return bloom. In some cultivars, even if thinning is achieved, fruit size at harvest may be less than expected based on crop load. CPPU, N-(2-chloro-4-pyridinyl)-N.-phenylurea, has been shown to increase fruit growth in apples, grapes, and kiwi. We evaluated combinations of NAA and CPPU on thinning, fruit growth and return bloom in Redchief `Delicious', `Elstar', and `Gloster'. CPPU was applied at 5 mgμL–1 (based on 0 to 10 mgμL–1 response curve) in combination with 15 mgμL–1 NAA as high-volume sprays at 7 to 10 mm KFD. Yield and fruit size distribution (on total yield) were used as index of response. In `Delicious', CPPU (3-year study) increased % large (70 mm+) fruit, but in the presence of NAA % large fruit was reduced 2 of the 3 years. CPPU did not induce significant thinning. There were no significant effects on color or soluble solids; firmness was increased slightly and seed number reduced. The L/D ratio was increased and uneven lobe and carpel development was common. CPPU had no significant effect on return bloom in presence or absence of NAA, but NAA increased bloom in both the presence and absence of CPPU. With `Elstar' (2-year study) there was no significant thinning with either chemical, but CPPU increased mean fruit size and % large (70–80 mm) fruit over nonthinned, but not significantly greater than NAA alone. There were no significant differences in firmness, color, soluble solids or seed number. NAA + CPPU did not inhibit fruit growth or cause excessive uneven carpel development. Frost damage reduced crop load in `Gloster' where results were similar to `Elstar' except seed number was reduced by the NAA + CPPU combination.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 787E-787
Author(s):  
John A. Cline ◽  
Mary Bom ◽  
Donald C. Elfving

A series of seven fruit thinning experiments with benzyladenine (BA), benzyladenine and GA4+7 (10:1 BA:GA4+7, Accel), carbaryl (CB), and NAA were conducted at the Horticultural Experiment Station, Simcoe, during the 1993 and 1994 growing seasons. In 1993, BA and Accel at 0, 100, 200, and 300 mg of BA/liter were applied to mature `Redspur Delicious'/M.26 and `Empire'/M.26 trees when fruit were ≈10 mm in diameter. In one set of experiments in 1994, Accel was applied at 0, 25, 50, 100, 150, and 200 mg of BA/liter to mature `McIntosh'/M.26 and `Empire'/M.7 trees. In a second set of experiments in 1994, Accel was applied at 0, 50, and 100 mg of BA/liter to mature `Idared'/M.26, `Empire'/M.26, and `Marshall McIntosh'/Mark trees when fruit were ≈10 mm in diameter. Additional treatments included bloom sprays of Accel at 50 mg of BA/liter, and sprays of BA at 50 mg a.i/liter, NAA at 10 mg a.i./liter, CB at 1000 mg a.i./liter, and a “low” (two fruit remaining/flower cluster) and `”high” (one fruit remaining/flower cluster) rate of hand thinning. In all experiments, thinning response to BA and Accel increased with concentration. Concentrations below 50, 100, and 300 mg BA/liter were generally ineffective for thinning `Empire', `Idared', and `McIntosh', and `Delicious', respectively. Fruit size of `Idared' and `Empire' was increased at rates of 50 mg BA/liter, whereas rates of 100 mg BA/liter were needed to increase fruit size of `McIntosh'. Accel applied to `Empire' at 150 mg BA/liter decreased the number of seeds per fruit and increased fruit length:diameter (L:D) ratios. Concentrations of Accel exceeding 100 mg BA/liter in `Red Delicious' decreased the number of seeds per fruit, while having little effect on fruit L:D ratios even though lower concentrations increased fruit L:D ratios. Diametric fruit growth measurements in 1994 indicated a temporary, but sharp, decline in growth rate immediately following treatment imposition for trees that responded positively to thinning. Additional data describing treatment effects on fruit size distribution, vegetative growth, and fruit maturity will be presented and discussed in relation to crop load.


HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 1947-1954
Author(s):  
Richard P. Marini ◽  
James R. Schupp ◽  
Tara Auxt Baugher ◽  
Robert Crassweller

In three experiments, diameters of apples representing 7% to 30% of the fruit on a tree were measured at ≈60 days after full bloom. Using previously published regression equations, the early-season fruit diameter values were used to estimate apple fruit weight at harvest (FWH). At harvest, all fruit on sample trees were weighed and the distributions of estimated FWH for fruit measured early in the season were compared with distributions of the actual FWH for whole trees. Actual FWH was normally distributed for only one of the three experiments. Although the estimated mean FWH averaged for the 10 trees was within 9% of the actual mean FWH for all three experiments, the distribution of estimated FWH differed significantly from the actual distribution for all three experiments. All fruit were then assigned to appropriate commercial fruit sizes or box counts (number of fruit/19.05 kg). Fruit size tended to peak on the same four box counts for the estimated and actual populations, but the estimated populations had too few fruits in the small- and large-size box counts. Using early-season estimates of FWH, commercial apple growers and packers can predict fairly accurately the percentage of the crop that will fall into the peak box counts, but a more accurate early-season estimate of the fruit size distribution will likely require measuring 50% of the fruit on a tree.


1997 ◽  
Vol 72 (5) ◽  
pp. 765-771 ◽  
Author(s):  
A. Naor ◽  
I. Klein ◽  
I. Doron ◽  
Y. Gal ◽  
Z. Ben-David ◽  
...  

2002 ◽  
Vol 82 (1) ◽  
pp. 165-167 ◽  
Author(s):  
C. R. Hampson ◽  
K. Sanford ◽  
J. Cline

Apple fruit size preferences are known to vary among consumer populations. Characteristic commercial fruit size varies among apple-growing regions within Canada for a given cultivar. Canadian consumer preferences for apple size are not well documented, nor is it known whether preferences vary among regions. In this study, 586 consumers from British Columbia, Ontario and Nova Scotia were asked to rate a series of apple sizes using the affective “Just Right” scale. Ideal fruit size was similar regardless of province or consumer gender. Age groups differed slightly in fruit size preference. The Just Right score was a linear function of fruit diameter for all groups. The fruit diameter considered ideal for dessert use ranged from 7.4 to 7.6 cm among the age groups. Key words: Malus × domestica Borkh., sensory evaluation, consumer preference


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1070b-1070
Author(s):  
Dougles D. Archbold

Absolute and relative fruit growth rates (AGR and RGR) of 5 cultivars were calculated from the oven-dry weights of fruits harvested periodically throughout the growing season. Both AGR and RGR were higher for larger fruit of different cultivars with similar days to maturity, and for summer- versus fall-ripening cultivars. Seasonal variability in AGR and RGR was observed, Apple fruit cortex disks were incubated in 14C-sorbitol solutions in vitro to determine if uptake rates at the cellular level varied between cultivars. Rates of sorbitol accumulation, expressed es μg sorbitol per mg dry weight cortex tissue, declined as the season progressed. Within a cuitivar, uptake rates were not relatad to fruit size, nor were differences found between cortex tissue samples from competing fruit on a spur. Sorbitol uptake rates were significantly lower for the more slowly-growing cultivar. The osmotic potential of the expressed cortex sap, sampled on several dates, was consistently lower for the more rapidly-growing cultivar. Thus, inherent differences in fruit growth rates among cultivars may be due to variation in regulation of osmotic potential.


2008 ◽  
Vol 28 (8) ◽  
pp. 1255-1261 ◽  
Author(s):  
A. Naor ◽  
S. Naschitz ◽  
M. Peres ◽  
Y. Gal

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 516D-516
Author(s):  
C.J. Stanley ◽  
D.S. Tustin

Many factors contribute to final apple fruit size. Researchers have studied these factors and have developed models, some very complex. Results from many New Zealand regions over several years suggest that early season temperature along with crop load are the key factors driving final fruit size. Accumulated growing degree days from full bloom to 50 days after full bloom (DAFB), accounted for 90% of the variance in fruit weight of `Royal Gala' apples at 50 DAFB under nonlimiting low-crop-load conditions. In turn, fruit weight at 50 DAFB accounted for 90% of the variance in final fruit size at harvest under the low-crop-load conditions. We hypothesise that a potential maximum fruit size is set by 50 DAFB, determined by total fruit cell number, resulting from a temperature-responsive cell division phase. Under conditions of no limitations after the cell division phase, we suggest that all cells would expand to their optimum size to provide the maximum fruit size achievable for that cell number. Factors which affect growth partitioning among fruits, e.g., higher crop loads, would reduce final fruit size, for any given cell number, when grown in the same environment. In Oct. 1999, four different crop loads were established at full bloom on `Royal Gala' trees (M9 rootstock) in four climatically different regions. In Hawkes Bay, similar crop loads were established at 50 DAFB on additional trees. Hourly temperatures were recorded over the season. Fruit size was measured at 50 DAFB and fruit will be harvested in Feb. 2000. These data should provide fresh insight and discussion into the respective roles of temperature and competition during the cell division fruit growth phase on apple fruit size.


Sign in / Sign up

Export Citation Format

Share Document