scholarly journals Influence of Irrigation System and Frequency on Plant Growth, Root Distribution, and Water-use Efficiency

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 798A-798
Author(s):  
Jaime K. Morvant ◽  
John M. Dole ◽  
Janet C. Cole

Euphorbia pulcherrima `Gutbier V-14 Glory' were grown with 220 mg·liter–1 N (20N–4.4P–16.6K) using ebb-and-flow (EF), capillary mat (CAP), microtube (MIC), and hand-watering (HAN) and were irrigated either daily (pulse - P) or as needed (regular - R). For all irrigation systems, pulse irrigation produced the greatest total dry weight. HAN-R produced lower total dry weight than all other irrigation systems and frequencies. Root dry weight was highest with pulse subirrigation (EF and CAP). MIC-P, EF-P, and EF-R were the most water-efficient treatments. The experiment was repeated twice with similar results. In a second experiment, Pelargonium ×hortorum `Pinto Red' root balls were sliced into three equal segments; top, middle, and bottom. For all irrigation systems, root counts were lowest in the top region. EF root counts were greatest in the middle region, while MIC root counts were greatest in the bottom region. The two subirrigation systems had higher average root counts than the two top-irrigated systems (HAN and MIC). In general, there was less difference in EC between regions for top-irrigated than for subirrigated root balls. The EC was lowest in the bottom and middle regions of EF and the bottom region of MIC and CAP. For subirrigation, the highest EC was in the top region. For all systems, pH was lowest in the bottom region.

HortScience ◽  
1994 ◽  
Vol 29 (8) ◽  
pp. 858-864 ◽  
Author(s):  
John M. Dole ◽  
Janet C. Cole ◽  
Sharon L. von Broembsen

`Gutbier V-14 Glory' poinsettias (Euphorbia pulcherrima Willd. Ex. Klotzsch) grown with ebb-and-flow irrigation used the least amount of water and produced the least runoff, and plants grown with capillary mats used the greatest amount of water and produced the most runoff, compared to microtube and hand-watering systems. The maximum amount of water retained by the pots and media was greatest for the microtube and ebb-and-flow systems and became progressively lower for the hand-watering and capillary mat systems. The media and leachate electrical conductivity from plants grown with subirrigation systems was higher than those grown with top irrigation. For the two top-irrigation systems (microtube and hand-watering), plants grown with 250 mg N/liter from a 20N-4.4P-16.6K water-soluble fertilizer had greater leaf, stem, and total dry weights than those grown with 175 mg N/liter. The two subirrigation systems (ebb-and-flow and capillary mat) produced plants that were taller and had greater leaf, stem, and total dry weights when grown with 175 than with 250 mg N/liter. The higher fertilizer concentration led to increased N, P, Fe, and Mn concentration in the foliage. Nitrogen concentration was higher in top-irrigated plants than in subirrigated plants. The ebb-and-flow system produced the greatest total dry weight per liter of water applied and per liter of runoff; capillary mat watering was the least efficient in regard to water applied and runoff.


2013 ◽  
Vol 31 (4) ◽  
pp. 259-266 ◽  
Author(s):  
Arjina Shrestha ◽  
Janet C. Cole

Water use, growth, and leaf necrosis of Burkwood viburnum, Korean spice viburnum, and leatherleaf viburnum were evaluated on plants grown in 0 (full sun), 30, or 60% shade during 2010 and 2011. In both years, total water use of Burkwood viburnum decreased with increased shade intensity. Water use of leatherleaf viburnum was lowest in 0% and highest in 30% shade. Daily water use was lower in 0% than in 30 or 60% shade for leatherleaf viburnum plants in August of both years and September of 2010 due to greater leaf necrosis, leaf abscission, and less growth in height and width. In both years, growth in height and width, and leaf number at harvest generally increased in all three species with increased shade intensity. All species had a larger leaf area, stem dry weight, and root dry weight in 30 and 60% than in 0% shade. Shade intensity did not influence root to shoot (R/S) ratio in Burkwood viburnum in 2010, but in 2011, a curvilinear relationship occurred between R/S ratio and shade intensity. Root to shoot ratio of Korean spice and leatherleaf viburnum decreased linearly in 2010 but curvilinearly in 2011 with increasing shade. Leaf necrosis ratings were lower in shaded plants of all three species in both years. Results indicate that greater plant growth, quality, and water use efficiency occurs when these three viburnum species are grown in shade than when they are grown in full sun.


2020 ◽  
Vol 12 (17) ◽  
pp. 7072
Author(s):  
Ping Yu ◽  
Qiansheng Li ◽  
Lan Huang ◽  
Kuan Qin ◽  
Genhua Niu ◽  
...  

Biochar (BC) has the potential as a peat moss alternative for container plant growth. Three experiments were conducted to evaluate the effects of mixed hardwood BC, compost types, mycorrhizae, and fertigation on container-grown tomato and pepper growth. In experiment 1 (Exp1), BC at 50%, 70%, and 90% (vol.) were mixed with 5% vermicompost (VC) with the rest being a commercial peat moss-based substrate (CS) and fertigated at 200 or 300 mg L−1 N. In experiment 2 (Exp2), 80% BC was mixed with chicken manure compost (CM; 5% or 10%) and CS and fertigated at 100 or 200 mg L−1 N. In experiment 3 (Exp3), 90% BC was blended with CS and fertigated at 200 or 300 mg L−1 N. Mixes in all the three experiments were added with or without mycorrhizae. Results showed that, compared with CS, in Exp1 tomato and pepper plants grown in BC-VC mixes had similar soil-plant analyses development (SPAD), growth index (GI), and total dry weight (TDW); in Exp2 and Exp3, plants in BC mixes (80% or 90%) had lower GI and TDW. In conclusion, BC (≤70%) amended with VC mixes could be used for container tomato and pepper production without negatively affecting plant growth, while BC (80%, 90%) mixes could have some negative impacts on plant growth.


2004 ◽  
Vol 44 (2) ◽  
pp. 131 ◽  
Author(s):  
C. J. Linehan ◽  
D. P. Armstrong ◽  
P. T. Doyle ◽  
F. Johnson

Water use efficiency (WUE) in irrigated dairy systems has been defined, in this paper, as the amount of milk (kg milk fat plus protein) produced from pasture per megalitre of water (irrigation plus effective rainfall). A�farm survey was conducted for the 1997–98 and 1998–99 seasons in the Goulburn Irrigation System (GIS) and Murray Irrigation System (MIS) when the irrigation water allocated to irrigators in the GIS was low (100–120% of water right compared with the MIS which was 130 and 200% of water right). These data were analysed in conjunction with information collected on the same farms in the 1994–95 and 1995–96 seasons when the irrigation water allocated to irrigators in both systems was above 150% of water right (Armstrong et al. 1998, 2000). The aim of the survey was to determine if the management decisions made by dairy farmers in seasons of low irrigation water allocations had an impact on WUE.Milk production averaged across the 2 irrigation systems increased significantly over the 5-year period (57 540–75 040 kg milk fat + protein per farm). Over the same period the amount of irrigation water applied (GIS�7.6 ML/ha, MIS 9.2 ML/ha) and the milking area (GIS 72 ha, MIS 73 ha) remained constant. The amount of concentrates fed per cow (GIS 650–1100 kg DM, MIS 480–860 kg DM) and per farm (GIS 119–228 t DM, MIS�72–157 t DM) increased, but pasture consumption (GIS 8.9–9.5 t DM/ha, MIS 9.1–9.7 t DM/ha) did not increase significantly over the survey period. Therefore, the increase in milk production appeared to come primarily from an increase in supplementary feeding rather than an increase in pasture consumption, resulting in no significant change in WUE in either system (GIS 66 kg milk fat + protein/ML, MIS 61 kg milk fat + protein/ML).The survey results indicate that despite varying water allocations in the 2 major irrigation systems in northern Victoria, milk production on farms in both systems increased while changes in WUE could not be detected by the methods used. This suggests tactical options to increase WUE in response to short-term changes in water allocation were either difficult to implement or not a priority in a business sense.


2011 ◽  
Vol 39 (2) ◽  
pp. 219 ◽  
Author(s):  
Asghar RAHIMI ◽  
Ali BIGLARIFARD

A hydroponic culture was carried out with strawberry cv. Camarosa to investigate the effects of four salinity levels and four different substrates on plant growth, mineral nutrient assimilation and fruit yield of strawberry. Total dry weight accumulation of plants was not inhibited at low salinities, but it was significantly inhibited at 60 mM NaCl. Dry mass (DM) partitioning in NaCl-stressed plants was in favor of crown and petioles and at the expense of root, stem and leaf, whereas leaf, stem and root DM progressively declined with an increase in salinity. Specific leaf area (SLA) and leaf area ratio (LAR) significantly decreased in cv. Camarosa at 60 and 90 mM. Results also showed that the presence of NaCl in the root medium induced an increase in total Na+ content of the plants in the shoot and root. Despite Na+ and K+, the increase in total inorganic ions resulted from increasing salinity, with Ca2+ and Mg2+ concentrations decreasing in shoot and increasing in roots with an increase in salinity. For all micro- and macroelements however, significant concentration changes related to different substrates were not detected in the present experiments. Results also showed a significant decline of Fe content of 40% and 49% in shoot and root, respectively.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 602b-602
Author(s):  
James B. Calkins ◽  
Bert T. Swanson ◽  
Daniel G. Krueger ◽  
Karin R. Lundquist

A study was designed to ascertain the efficacy, water use efficiency, runoff potential, and cost effectiveness of four container irrigation systems: overhead sprinkler irrigation, in-line trickle irrigation, capillary mat with leaky hose, and sub-irrigation. Results were species dependent. Plant growth was best under capillary mat and trickle irrigation treatments, however, differences in plant growth and performance between irrigation treatments were minimal. Differences in water use, however, were quite significant. Overhead irrigation was inefficient regarding water use while capillary mat and trickle systems used much lower volumes of water. Conservative irrigation systems which maintain acceptable plant growth using less water and reduce runoff from container production areas can clearly benefit growers by reducing production and environmental costs.


2017 ◽  
Vol 47 (3) ◽  
pp. 345-352
Author(s):  
Álvaro Henrique Cândido de Souza ◽  
Roberto Rezende ◽  
Marcelo Zolin Lorenzoni ◽  
Fernando André Silva Santos ◽  
André Maller

ABSTRACT Adequate crop fertilization is one of the challenges for agriculture. Measuring gas exchange and biomass accumulation may be used to adjust crop management. The effect of fertigation with potassium (0 kg ha-1, 54 kg ha-1, 108 kg ha-1 and 216 kg ha-1) and nitrogen (0 kg ha-1, 67 kg ha-1, 134 kg ha-1 and 268 kg ha-1) on gas exchange and biomass accumulation in eggplant was assessed under greenhouse conditions. The net photosynthesis, stomatal conductance, transpiration, internal CO2 concentration, instantaneous carboxylation efficiency, water-use efficiency and total dry weight were evaluated. With the exception of K for water-use efficiency and N for internal CO2 concentration, all the other gas exchange parameters were significantly affected by the K and N doses. There was an interaction between N and K doses for net photosynthesis, stomatal conductance, transpiration and instantaneous carboxylation efficiency. The highest values for net photosynthesis, stomatal conductance, transpiration rate, carboxylation instantaneous efficiency and total dry weight were found in the range of 125-185 kg ha-1 of K and 215-268 kg ha-1 of N.


1963 ◽  
Vol 43 (2) ◽  
pp. 268-274 ◽  
Author(s):  
J. M. Elliot ◽  
M. Elizabeth Back

In a tobacco greenhouse experiment, potassium was applied to the muck layer at 3.32, 6.64, 9.96, 13.28, and 16.60 pounds, with and without 3 pounds of chlorine, per 900 square feet. A check treatment received no potassium or chlorine. Greatest total dry weight per plot and highest rate of survival of seedlings in the field was obtained with the 3.32-pound rate of potassium with or without chlorine; dry weight of tops, height of plant, leaf area, and total dry weight per plot tended to decrease with each increment of potassium above 3.32 pounds. High levels of applied potassium increased soluble salts in the muck to a level which retarded plant growth. Apparently the muck was capable of releasing large amounts of potassium for plant growth as more potassium was taken up by the plants than was supplied by the 3.32-pound rate. Chlorine in the fertilizer increased the total ash and potassium content of the seedlings but tended to decrease the nitrogen. Potassium and chlorine had no effect on the weight of roots and relative turgidity of the plants.


2006 ◽  
Vol 41 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Marco Antonio Nogueira ◽  
Elke Jurandy Bran Nogueira Cardoso

The objective of this work was to evaluate the response of rangpur lime (Citrus limonia) to arbuscular mycorrhiza (Glomus intraradices), under P levels ranging from low to excessive. Plants were grown in three levels of soluble P (25, 200 and 1,000 mg kg-1), either inoculated with Glomus intraradices or left noninoculated, evaluated at 30, 60, 90, 120 and 150 days after transplanting (DAT). Total dry weight, shoot P concentration and specific P uptake by roots increased in mycorrhizal plants with the doses of 25 and 200 mg kg-1 P at 90 DAT. With 1,000 mg kg-1 P, mycorrhizal plants had a transient growth depression at 90 and 120 DAT, and nonmycorrhizal effects on P uptake at any harvesting period. Root colonization and total external mycelium correlated positively with shoot P concentration and total dry weight at the two lowest P levels. Although the highest P level decreased root colonization, it did not affect total external mycelium to the same extent. As a result, a P availability imbalance affected negatively the mycorrhizal symbiosis and, consequently, the plant growth.


1977 ◽  
Vol 57 (1) ◽  
pp. 193-197 ◽  
Author(s):  
D. J. MAJOR

Irrigated Polish rape (Brassica campestris L. cv. Span) and Argentine rape (B. napus L. cv. Zephyr) were harvested at 1-wk intervals at Lethbridge, Alberta and separated into leaves, stems, pods, and seed. Leaves reached maximum dry weight on 8 July for Span and 15 July for Zephyr and then senesced completely or to low levels. Maximum plant dry matter, which ranged from 312 to 1,174 g/m2, occurred in the last half of August. Although total dry weight increased substantially during the period that leaf dry weight was decreasing, crop growth rate also decreased, indicating that leaves were an important source of photosynthates for plant growth.


Sign in / Sign up

Export Citation Format

Share Document