scholarly journals Flowering of Eustoma grandiflorum (Raf.) Shinn. Cultivars Influenced by Photoperiod and Temperature

HortScience ◽  
1995 ◽  
Vol 30 (7) ◽  
pp. 1375-1377 ◽  
Author(s):  
Brent K. Harbaugh

Seedling growth and flowering responses were examined for four Eustoma cultivars exposed to photoperiod × temperature treatments during two seedling ages. Seedlings were grown under short days (SD, 12-hour photoperiod) or long days (LD, 18-hour photoperiod) in soil at 12 or 28C from 14 to 43 days after sowing. Seedlings from each treatment were then subdivided into four lots and subjected to the same photoperiod × temperature treatments from 43 to 79 days after sowing, for a total of 16 treatments. To determine flowering response, seedlings were grown subsequently for 120 days at 22C under the same photoperiod that they received from day 43 to 79. For all cultivars and both seedling ages, seedlings were larger and had more leaves when grown at 28C rather than at 12C, but the tallest plants at flowering were from seedlings exposed to 12C. Seedlings from some treatments bolted but did not initiate visible flower buds, and some seedlings developed visible buds that later aborted, resulting in plants that did not flower by the termination of the experiment (199 days). Cultivar and interactive effects of photoperiod and temperature influenced the percentage of flowering plants. Vegetative growth and flowering responses were similar for `Yodel White', `Heidi Pink', and `Blue Lisa'. They flowered as LD plants when seedlings were grown at 12C from day 14 to 43 or day 43 to 79. Seedlings of these cultivars that were grown under SD at 28C from day 43 to 79 did not flower, regardless of photoperiod or temperature treatments from day 14 to 43. However, SD photoperiod or 28C did not decrease flowering for `GCREC-Blue'.

HortScience ◽  
1992 ◽  
Vol 27 (8) ◽  
pp. 885-887 ◽  
Author(s):  
Brent K. Harbaugh ◽  
Mark S. Roh ◽  
Roger H. Lawson ◽  
Brent Pemberton

Three lisianthus [Eustoma grandiflorum (Raf.) Shinn.] cultivars 0, 10, 17, 24, or 31 days from sowing were grown in 28C soil for 0, 7, 14, 21, or 28 days to determine the effects of high temperature during seedling growth on the development of rosetted plants. Increasing the duration of high-temperature exposure increased the percentage of rosetted plants for all cultivars. Such exposure for 28 days resulted in 96%, 93%, and 18% rosetted plants for cultivars Yodel White, Yodel Pink, and GCREC-Blue, respectively. Seedling age did not affect percentage of flowering `Yodel Pink' plants, but as seedling age increased to 31 days, the percentage of flowering plants increased with `GCREC-Blue' and decreased for `Yodel White'. In a second experiment, four lisianthus cultivars were grown at 22C for 3 weeks and then exposed for 28 days to soil at 22, 25, 28, or 31C. Increasing soil temperature resulted in more rosetted plants for all cultivars. With soil at 31C, 83%, 58%, 19%, and 2% of the seedlings rosetted for the cultivars USDA-Pink, Yodel White, Little Belle Blue, and GCREC-Blue, respectively.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 836B-836
Author(s):  
Carrie DeVier ◽  
Robert L. Geneve

The influence of flowers on root formation in mum cuttings was evaluated for stock plants grown under long (LD) or short (SD) days. SD plants showed visible flower buds after 20 days and color after 30 days. Cuttings were taken from LD or SD plants at 10-day intervals until flowers were fully open. Cuttings from LD plants rooted at 100% throughout the study, with 24 or more roots per cutting. Cuttings from SD plants showed a gradual reduction in rooting percentage and number as flower development increased. After 30 days, roots per cutting for SD plants was reduced by 85% compared to LD cuttings and only 30% of SD cuttings rooted. In a separate experiment, cuttings were taken from stock plants after 40 long or short days. Partial or all flower buds were removed from SD plants prior to sticking. SD cuttings (regardless of flower bud removal) rooted at <47%. LD cuttings rooted between 23.6 to 43.8, while SD cuttings rooted between 3.1 and 8.5 roots per rooted cutting. The data indicates that cuttings taken from flowering plants show reduced potential for rooting and that this effect was not influenced by removal of flowers prior to sticking cuttings.


1991 ◽  
Vol 116 (5) ◽  
pp. 856-860 ◽  
Author(s):  
Rebecca L. Darnell

Containerized `Climax' and `Beckyblue' rabbiteye blueberry plants (Vaccinium ashei Reade) were exposed to 5 weeks of natural daylengths or shortened daylengths starting 30 Sept. `Beckyblue' plants exposed to short daylengths in the fall initiated more flower buds and had a shorter, more concentrated bloom period than did plants exposed to natural fall daylengths. Reproductive development of `Climax' was not influenced by photoperiod treatments. Leaf carbon assimilation of both cultivars increased under short days. Partitioning of translocated 14C-labeled assimilates to stem tissue increased under short photoperiods for `Beckyblue'; however, partitioning patterns in `Climax' were not affected. Increased carbon fixation and increased partitioning of carbon to stem tissue under short days may contribute to the observed effect of short days on enhancing reproductive development in `Beckyblue'.


1960 ◽  
Vol 40 (2) ◽  
pp. 335-344 ◽  
Author(s):  
Henri P. Therrien ◽  
Dale Smith

The percentage of plants that flowered in the seedling year in spaced populations of red and alsike clovers at Madison and Arlington, Wisconsin, was highest in the earliest seedings (May 15) and decreased with later seeding dates. No plants flowered in the July 15th seedings. The percentage of winterkilling during the first winter was higher in the flowering plants of each clover than in the non-flowering plants. Differences in flowering and winter survival were noted among clover strains and in winter survival among plant types within strains.Prevention of flowering in medium red clover by removing flower buds, flowering stems and/or elongating tillers resulted in greater vegetative vigour and winter survival. Plants that were allowed to flower freely in the seedling year in spaced populations had a smaller number of non-flowering crown tillers, a smaller width of crown, a lower dry weight of crown, root and total available carbohydrates in the roots, less root branching, a slightly lower percentage of total available carbohydrates in the roots, and more winterkilling during the first winter than plants that were prevented from flowering. These responses may help in part to explain the benefits attributed to clipping red clover in the seedling year.


1963 ◽  
Vol 43 (3) ◽  
pp. 386-389 ◽  
Author(s):  
Dale Smith

Flowering response of first-year individual plants of nine varieties of red clover was studied at Arlington, Wisconsin. Plant populations of varieties with high winterhardiness had high percentages of non-flowering plants. Winterkilling of plant types increased progressively from non-flowering Type 1 to profuse flowering Type 5.Highly significant correlations were obtained between per cent winterkilling during the first winter with per cent non-flowering plant Type 1 (r = −0.90 and −0.95 during 2 years), per cent of flowering plant Type 5 (r = +0.92 and +0.80), and the total per cent of non-flowering plants (r = −0.90 and −0.94). Flowering response can be used with a high degree of reliability in establishing the probable persistence of new strains relative to standard varieties and as a selection criterion for hardy plants.


2000 ◽  
Vol 125 (1) ◽  
pp. 135-142 ◽  
Author(s):  
A.M. Boland ◽  
P.H. Jerie ◽  
P.D. Mitchell ◽  
I. Goodwin ◽  
D.J. Connor

Individual and interactive effects of restricted root volume (RRV) and regulated deficit irrigation (RDI) on vegetative growth and mineral nutrition of peach trees [Prunus persica (L.) Batsch (Peach Group) `Golden Queen'] were studied over 3 years (1992-95). Trees were grown in lysimeters of five different volumes (0.025, 0.06, 0.15, 0.4, and 1.0 m3) with either full or deficit (RDI) irrigation. Increasing soil volume increased vegetative growth as measured by trunk cross-sectional area (TCA) (linear and quadratic, P < 0.011) and tree weight (linear, P < 0.001) with the final TCA ranging from 29.0 to 51.0 cm2 and tree weight ranging from 7.2 to 12.1 kg for the smallest to largest volumes. Root density measured at the completion of the experiment decreased with increasing soil volume (linear and quadratic, P < 0.001) with root length density declining from 24.0 to 2.0 cm·cm-3. RDI reduced vegetative growth by up to 70% as measured by weight of summer prunings. Root restriction was effective in controlling vegetative vigor and is a viable alternative for control of vegetative growth. Mineral nutrition did not limit tree growth.


Sign in / Sign up

Export Citation Format

Share Document