scholarly journals Foliar SPAD-502 Meter Values, Nitrogen Levels, and Extractable Chlorophyll for Red Maple Selections

HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 468-470 ◽  
Author(s):  
Jeff L. Sibley ◽  
D. Joseph Eakes ◽  
Charles H. Gilliam ◽  
Gary J. Keever ◽  
William A. Dozier ◽  
...  

Twelve red maple selections in an existing field trial were evaluated for leaf chlorophyll content with a SPAD-502 chlorophyll meter, total foliar N concentration with a LECO CHN analyzer, and total foliar chlorophyll content (CHL) by N,N-dimethylformamide extraction. Selections included Acer rubrum L. `Autumn Flame', `Fairview Flame', `Franksred' (Red Sunset™), `Karpick', `Northwood', `October Glory', `Redskin', `Schlesingeri', and `Tilford', and A. ×freemanii E. Murray `AutumnBlaze' (`Jeffersred'), `Morgan' (`Indian Summer'), and `Scarsen' (Scarlet Sentinel™). `Franksred' and `Northwood' had the highest monthly SPAD-502 values in 1993 and 1994. Lowest SPAD-502 values were on `Redskin' and `Autumn Blaze' each year. Foliar N concentration ranged from 2.62% for `Autumn Flame' to 2.01% for Redskin. CHL levels on a fresh-weight basis ranged from 5.38 mg·g–1 for `Fairview Flame' to 3.94 mg·g–1 for `October Glory'. SPAD-502 and extractable CHL values were correlated (r = 0.45; P ≤ 0.001); however, the correlation (r = 0.15; P ≤ 0.38) between SPAD-502 values and total foliar N concentration was nonsignificant.

1990 ◽  
Vol 20 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Paul E. Heilman

Eleven months after the May 1980 eruption of Mount Saint Helens in southeastern Washington, United States, three Populus clones were planted in an experiment on the Toutle River mudflow deposit. The trees grew at an abnormally slow rate and by 3 years were overtopped by a dense stand (14 600 ± 3600 trees/ha) of red alder seeded naturally onto the site. Over the 6-year period of the study, the total N content of the soil increased an average of 56 kg•ha−1•year−1•. Foliar N concentration in Populus increased significantly from a mean late summer – early autumn value in the 2nd year (1982) of 0.69% N to a value of 2.06% N at the end of the seventh growing season. The mean annual height growth of the largest Populus averaged <0.5 m/year in the first 3 years, increasing to an average of over 1.0 m/year in the 5th and 6th years. Fertilizer treatments with N (as urea) and N + P (as urea plus treble superphosphate) placed in the soil near the individual Populus at a maximum rate of 5.3 g N/tree increased height growth in the year of fertilization (1982) and the following year (the response in height growth for the 2 years totaled 64%). After 1984, no significant effects of fertilizer on height growth, total height, or diameter were evident. Nitrogen fertilization significantly increased foliar N concentration (1.54% N with the highest N treatment vs. 0.69% N in the control) in the year of treatment only. Phosphorus fertilization had no significant effect on growth or foliar P concentration. At 6 years, only 2% of the Populustrichocarpa Torr. & Gray clone and 13% of the tallest Populus hybrid were equal to or above the mean height of alder dominants and codominants (6.2 m). Additionally, the diameter growth of Populus was severely limited: the trees had only 8% of the cross-sectional area of "normal" trees for their height. Results indicated that on sites of low N such as the mudflow, Populus may not compete satisfactorily in mixture with alder. Such behavior is in sharp contrast to sites of high N, where red alder cannot compete with Populus.


1995 ◽  
Vol 13 (2) ◽  
pp. 82-85
Author(s):  
Lorna C. Wilkins ◽  
William R. Graves ◽  
Alden M. Townsend

Abstract Two experiments were conducted to determine whether genotypes of red maple (Acer rubrum L.) and Freeman maple (A. x freemanii E. Murray) differ in responses to high root-zone temperature. During the first experiment, dry mass of ‘Franksred’, ‘October Glory’, and ‘Schlesinger’ red maple, ‘Indian Summer’ Freeman maple, and selections from Arkansas, Maine, and Wisconsin were similar at 24, 28, and 32C (75, 82, and 90F), but dry mass at 36C (97F) was only 22% of that at 28C (82F). ‘Autumn Flame’, ‘Franksred’, ‘October Glory’, and ‘Schlesinger’ red maple and ‘Indian Summer’ and ‘Jeffersred’ Freeman maple differed in responses to 34C (93F) during the second experiment. Stem length and plant dry mass were higher at 28C (82F) than at 34C (93F) for all cultivars except ‘Autumn Flame’ and ‘Jeffersred’, and the extent to which 34C (93F) decreased the length of the longest third-order root ranged from 50% for ‘Autumn Flame’ to 90% for ‘Indian Summer’. The higher root-zone temperature decreased transpiration by as little as 25% for ‘Jeffersred’ to as much as 89% for ‘Franksred’, and 34C (93F) reduced leaf chlorophyll content of only ‘Indian Summer’ and ‘Jeffersred’. These results indicate that ‘Franksred’ and ‘Indian Summer’ are relatively sensitive while ‘Autumn Flame’, ‘Jeffersred’, and ‘Schlesinger’ are relatively resistant to high root-zone temperature.


HortScience ◽  
2006 ◽  
Vol 41 (5) ◽  
pp. 1347-1350 ◽  
Author(s):  
James Altland

Franksred red maple (Acer rubrum `Franksred') trees were sampled from nursery fields in 2003 and 2004 to determine the cause of a common foliar chlorosis. Plots in 21 and 39 different nurseries were identified in 2003 and 2004, respectively. A single plot from each nursery was sampled in June of each year, whereas two to four plots per nursery were sampled in September. Each plot consisted of 20 consecutive trees in a single row. From each plot, a foliar tissue sample was analyzed for the complete range of essential nutrients. Plant height, stem diameter, leaf chlorophyll content, and a subjective plant quality rating were also recorded. From each plot, a soil sample was collected and analyzed for pH, EC, organic matter, and a range of essential nutrients. The foliar chlorosis was determined to be incited by manganese (Mn) deficiency. Tissue Mn was highly correlated with soil pH. Chlorotic plants were smaller with less stem diameter than nonchlorotic plants. Sufficiency ranges for tissue and soil tests were determined and are provided for red maple nursery production.


1998 ◽  
Vol 22 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Kris M. Irwin ◽  
Mary L. Duryea ◽  
Earl L. Stone

Abstract This study examined the effects of supplemental nitrogen (N) applied to slash pine (Pinus elliottii var. elliottii [Engelm.]) seedlings in a north central Florida nursery. Treatments were applied during a 4 wk period during November and December, 1989, as follows: control (no fall fertilization—current nursery practice); low N (one application of NH4NO3 at 57 kg N/ha); and high N (three applications at the same rate). At time of lifting and outplanting, there were no significant morphological differences among the treatments, but foliar N concentration increased significantly in accord with treatment. Field performance was evaluated at five site-prepared locations. First-year survival of high N and low N treatments were 15 and 12% greater, respectively, than unfertilized seedlings. First-year heights of the high and low N treatments were 15 and 7% greater, respectively, than the control. South. J. Appl. For. 22(2):111-116.


2020 ◽  
Vol 48 (2) ◽  
pp. 656-665
Author(s):  
Qilong ZENG ◽  
Yanqin JIANG ◽  
Gangqiang DONG ◽  
Jiguang WEI ◽  
Jiafeng JIANG ◽  
...  

Aluminum (Al) is the major factor limiting plant growth on acidic soils. Blueberry (Vaccinum spp.) is an acidophilic plant. Highbush blueberry and rabbiteye blueberry are the main commercially cultivated species, while the response of which to Al is still unclear. Therefore, hydroponic experiments were conducted to determine the effect of Al (0 and 100 μmol L−1) on the growth and nutrient uptake of highbush blueberry ‘Brigitta’ and rabbiteye blueberry ‘Brightwell’. The results showed that root biomass, root length per fresh weight, root activity and foliar nitrogen (N) concentration of ‘Brigitta’ were significantly decreased by Al, while root lipid peroxidation was increased by Al. In contrast, the biomass and root activity of ‘Brightwell’ were not affected by Al treatment, root lipid peroxidation was significantly decreased, root length and surface area per fresh weight were increased compared with the control, which was benefic for nutrients absorption. In fact, foliar N concentration of ‘Brightwell’ was increased in Al treatments. However, fewer Al was accumulated in leaves of ‘Brightwell’ compared to ‘Brigitta’. Therefore, it could be concluded that growth and nutrients uptake of ‘Brightwell’ was not negative affected by Al, which meant ‘Brightwell’ was resistant to Al, compared to ‘Brigitta’.


2009 ◽  
Vol 39 (5) ◽  
pp. 1024-1035 ◽  
Author(s):  
Monica G. Turner ◽  
Erica A.H. Smithwick ◽  
Daniel B. Tinker ◽  
William H. Romme

Understanding nutrient dynamics of young postfire forests may yield important insights about how stands develop following stand-replacing wildfires. We studied 15-year-old lodgepole pine stands that regenerated naturally following the 1988 Yellowstone fires to address two questions: (1) How do foliar nitrogen (N) concentration and total foliar N vary with lodgepole pine density and aboveground net primary production? (2) Is foliar N related to litter production and to rates of gross production, consumption, and net production of soil NH4+ and NO3–? Foliar N concentration of new lodgepole pine needles averaged 1.38%; only stands at very high density (>80 000 trees·ha–1) approached moderate N limitation. Foliar N concentration in composite (all-age) needles averaged 1.08%, varied among stands (0.87%–1.39%), and declined with increasing tree density. The foliar N pool averaged 48.3 kg N·ha–1, varied among stands (3.6–218.4 kg N·ha–1), and increased with aboveground net primary production. Total foliar N was not related to laboratory estimates of net production of NH4+ or NO3– in soils. Lodgepole pine foliage is a strong N sink, and N does not appear to be limiting at this early successional state. The initial spatial patterns of postfire tree density strongly influence landscape patterns of N storage.


1979 ◽  
Vol 59 (2) ◽  
pp. 343-350 ◽  
Author(s):  
A. M. ARMITAGE ◽  
M. J. TSUJITA

Supplemental lighting and nitrogen nutrition affected growth, flowering, flower yield, foliar nitrogen content, and flower keeping quality of Rosa hybrida ’Forever Yours.’ Light treatments consisted of ambient light and ambient light supplemented with high pressure sodium lamps at intensities of 105 and 158 μEm−2 sec−1 18 h/day (7.4 and 10.8 klx). Three nitrogen levels, 100, 200, and 400 ppm, were applied with each irrigation. Supplementary light of 105 μEm−2 sec−1 increased yield, stem length, fresh weight, and stem grade but caused decreased foliar N and keeping quality. Lighting at 158 μEm−2 sec−1 increased flower yield, but decreased days to flowering, stem length, fresh weight, foliar N, keeping quality, and stem grade. Nitrogen levels of 100 and 200 ppm were insufficient to maintain foliar N content at optimum levels in lighted roses, but 200 ppm N resulted in better keeping quality compared with 100. Nitrogen alone, however, had little effect on yield and quality. Increasing the nitrogen level to 400 ppm resulted in higher foliar N content in the lighted treatments but failed to have a significant effect on the yield or quality of roses.


1991 ◽  
Vol 18 (1) ◽  
pp. 37 ◽  
Author(s):  
DW Sheriff ◽  
EKS Nambiar

Potted Eucalyptus globulus Labill. seedlings were grown in sand with added inorganic nutrients. Three treatments were applied: (1) inorganic nitrogen was added regulary (N2), (2) in a small initial quantity only (N1) and (3) after a period of N deficiency (N3); other nutrients were supplied regularly. Biomass increment, foliar nutrient concentrations and gas exchange of leaves were measured. Carbon assimilation, N uptake, growth, and leaf production and expansion were all greater at higher N. Partitioning of dry matter to roots and tops of seedlings was unaffected by treatment. Carbon assimilation and diffusive conductance were linearly related at saturating light and were positively associated with foliar N concentrations; intercellular CO2 partial pressures were constant at c. 246 μbar. The relationship between carbon assimilation and foliar N concentration was better when calculated per leaf weight than per leaf area. Dark respiration was positively associated with foliar N concentration. Following refertilisation of N-deficient seedlings, foliar N and carbon assimilation increased rapidly; about 20 days later N uptake declined and seedling biomass started to increase. Instantaneous transpiration efficiency [c. 5 mmol (CO2) mol-1 (H2O)] was not significantly affected by foliar N concentration or treatment. Instantaneous nitrogen use efficiency of leaves: (rate of carbon assimilation)/(leaf N content) was greater at higher N. In contrast to the literature, there was no simple relationship between nitrogen use efficiency of whole seedlings (biomass gain)/(nitrogen concentration) and seedling N. Instantaneous transpiration and nitrogen use efficiencies were generally high compared with values published for many woody plants. A simple model predicted that, with no environmental constraints, exposed mature leaves with high N (1.5 mmol g-1) assimilate 5.4 times more carbon than similar leaves with low N (0.5 mmol g-1). Night respiration of foliage is a greater proportion of daily carbon balance for leaves with low N. When environmental factors constrain carbon assimilation foliage with high N is most affected.


Weed Science ◽  
1991 ◽  
Vol 39 (3) ◽  
pp. 329-332 ◽  
Author(s):  
Rex A. Liebl ◽  
Michael A. Norman

Based on chlorophyll content, hydroponically cultured soybean seedlings were 254, 66, and 13 times more tolerant to clomazone than velvetleaf, corn, and smooth pigweed, respectively. Clomazone, at concentrations that inhibited chlorophyll, did not affect fresh weight accumulations of any species except velvetleaf. However, in velvetleaf, fresh weight accumulation was only half as sensitive to clomazone as the leaf chlorophyll content. Uptake of14C-clomazone from nutrient solution by 72 h after treatment (HAT) (pigweed > velvetleaf > soybean > corn) indicates that differential absorption cannot account for selectivity. Shoot:root ratios of14C recovered from soybean, corn, velvetleaf, and pigweed by 72 HAT were 0.39, 0.84, 1.67, and 2.37, respectively. The limited acropetal clomazone translocation in soybean seedlings may account to a small degree for soybean tolerance to clomazone. Conversion of clomazone to more polar metabolites was rapid in all four species. There were no significant differences among species in the percentage of14C activity recovered as clomazone from root tissue by 72 HAT. Of the14C activity recovered from shoots of soybean, corn, pigweed, and velvetleaf seedlings by 72 HAT, 46, 59, 35, and 54%, respectively, was clomazone. Differences in clomazone uptake, distribution, and metabolism among the four species were either insignificant or poorly correlated to selectivity, and therefore cannot account for the tremendous differences in clomazone sensitivity among these species. These observations indicate, indirectly, that differences at the site of action may account for selectivity.


Sign in / Sign up

Export Citation Format

Share Document