scholarly journals Intermittent Warming Reduces Tomato Fruit Quality Deterioration during Cold Storage

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 642b-642
Author(s):  
Abdul Hakim ◽  
Errki Kaukovirta ◽  
Eija Pehu ◽  
Irma Voipio

Mature green tomatoes (cv. Vibelco) were stored at 2°C for 2, 3, and 4 weeks. Intermittent warming treatments for 12, 24, and 36 hours at 24°C were applied at the end of every week. Control Fruit were held continuously at 2°C. All fruit were subjected to poststorage ripening at 24°C for 7 days. Fruit decay, chlorophyll and lycopene content, fruit firmness, pH, TSS and TA were detected after storage or 7 days after transfer to 24°C. Results were compared between control and intermittently warmed fruit when stored at 2°C for 2, 3, and 4 weeks. Compared to fruit kept continuously at 2°C, intermittent warming at 24°C for 12, 24, and 36 hours reduced decay, increased chlorophyll disappearance, lycopene synthesis, and fruit firmness, enhanced pH and TSS, and declined TA. Fruit intermittently warmed for 36 hours/week showed the least decay, higher chlorophyll disappearance, and lycopene synthesis; retention of fruit firmness, pH, and TSS; and lower TA than fruit intermittently warmed for 12 and 24 hours/week. Decay percentage, lycopene content, pH, and TSS were increased from 2 to 4 weeks, but chlorophyll content, fruit firmness, and TA were declined.

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 599c-599
Author(s):  
Abdul Hakim ◽  
Errki Kaukovirta ◽  
Eija Pehu ◽  
Irma Voipio

Hot water treatment at 38, 42, 46, 50, and 54 °C for 30 60 and 90 minutes were applied to mature green tomatoes before storing at 2°C for 2, 4 and 6 weeks. Control fruit were treated at 20°C water. After storage all fruit were held at 20°C for 7 days. Control fruit showed lower weight loss, lycopene content, pH, and TSS but higher decay, chlorophyll content, TA, and more Firmness than hot-water-treated fruit. Weight loss, lycopene content, pH, and TSS were progressively increased with increased water temperature from 38 to 54°C, while chlorophyll content, TA and fruit firmness were declined. Among hot-water-treated fruit, least decay were detected in fruit treated at 46°C water 6 weeks stored fruit showed higher weight loss, more decay, lower chlorophyll and lycopene content, TSS, TA, less firmer and higher pH than those fruit stored for 2 or 4 weeks. Increased immersion time from 30 to 90 minutes resulted higher weight loss, lower decay, chlorophyll content, TA, and less firm, but higher lycopene content, TSS, and pH.


HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 24-31
Author(s):  
Achala N. KC ◽  
Ann L. Rasmussen ◽  
Joseph B. DeShields

Sprayable formulation of 1-methylcyclopropene (1-MCP) was tested as a preharvest application on European pears to determine the best timing and rate of 1-MCP application for maintaining fruit firmness and quality of trees during harvest and in storage after harvest. Two rates of 1-MCP, 0.06 and 0.13 g⋅L−1 active ingredient (a.i.) (minimum and maximum rates, respectively), were sprayed 1 week and 2 weeks before commercial harvest on two cultivars, Bosc and Comice, in 2017 and 2018. After 2 months in cold storage (0 ± 1 °C), differences in fruit firmness of both cultivars were observed among treatments. For ‘Bosc’, fruit treated with both rates 1 week before harvest were 50% firmer than nontreated control fruit. For ‘Comice’, fruit treated with the maximum rate both 2 weeks and 1 week before commercial harvest were 46% and 31% firmer than nontreated control fruit, respectively. However, after 4 months in storage, no differences in fruit firmness of both ‘Bosc’ and ‘Comice’ were observed among treatments. The sprayable 1-MCP application applied 2 weeks before commercial harvest also affected the fruit firmness on trees. The maximum rate of 1-MCP treatment consistently maintained the fruit firmness by 5.0 N compared with fruit treated with the minimum rate and nontreated controls. This effect was significant until 1 week after commercial harvest for both cultivars and until 2 weeks after commercial harvest for ‘Bosc’. The poststorage fruit firmness and overall eating quality of ‘Bosc’ were unaffected by the maximum rate of 1-MCP application as well as the extended harvest time. However, for ‘Comice’, the overall eating quality was negatively impacted by 1-MCP treatments. This study suggests that the maximum rate (0.13 g⋅L−1 a.i.) of 1-MCP application 2 weeks before commercial harvest maintains the fruit firmness of ‘Bosc’ for at least 2 weeks more and offers an extended harvest window for better preharvest management. Furthermore, this treatment improves the physiological fruit quality such as senescence scald during the poststorage period without significantly affecting the poststorage ripening of ‘Bosc’ after 4 months of storage.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 781A-781
Author(s):  
Suparna Whale* ◽  
Zora Singh ◽  
John Janes

The effects of preharvest application of AVG and ethephon alone, or in combinations, on color development, fruit quality and shelf life were tested in `Pink Lady' apples (Malus domestica Borkh.) in Western Australia during 2002.The experiment aimed at improving color without adversely affecting fruit quality at harvest and after long term cold storage. Treatments included 124.5 g·ha-1 AVG only [148 Days after full bloom (DAFB)]; 280 g·ha-1 ethephon only (148 DAFB); AVG (148 DAFB) followed by ethephon (166 DAFB); and control. Fruit were evaluated for color development, internal ethylene concentration (IEC) and quality at commercial harvest(181DAFB) and 45, 90, and135 days after cold storage (1 °C ± 0.5 °C). At harvest, ethephon with or without AVG significantly (P ≤ 0.05) improved red blush and total anthocyanin in fruit skin. AVG+ethephon treated-fruit had higher total anthocyanin and TSS compared to AVG alone and control fruit. There were no significant differences among different AVG and ethephon treatments for fruit firmness and IEC. During different storage periods, fruit treated with AVG alone and AVG+ethephon had significantly lower IEC compared to fruit treated with ethephon only and the control, however the interactions between treatments and storage periods were not significant for fruit firmness. AVG + ethephon and ethephon alone did not significantly affect fruit color during different storage periods, which showed that the subsequent ethephon spray on AVG-treated fruit had overcome the inhibitory effect of AVG. Our experimental results showed that application of AVG followed by ethephon improved color in `Pink Lady' apples without compromising fruit quality including firmness during extended cold storage.


2015 ◽  
Vol 8 (1) ◽  
pp. 68
Author(s):  
B. Chutichudet ◽  
Prasit Chutichudet ◽  
Usana Trainoak

<p>‘Maha Chanok’<strong> </strong>mango is an economic fruit crop widely cultivated commercially throughout Thailand. By nature, mango fruit has a rather limited storage life after harvest. 1-methylcyclopropene (1-MCP) has been accepted as a commercial substance to improve several fruit qualities. The objective of this research was to study the effects of 1-MCP on the external postharvest qualities and storage life on the ‘Maha Chanok’ mango fruit. The experiment was laid out in a Completely Randomized Design with three replicates, ten fruits per replicate. Mango fruit was fumigated with 1-MCP at three concentrations (1000, 1250, or 1500 nl l<sup>-1</sup>) and three fumigation periods (12, 18, or 24 h), compared with the control fruit. After treating, all treatments were stored under ambient temperature (27 °C, 80%R.H.). The following determinations were made every two days for assessment of fruit weight loss, firmness, chlorophyll content, decay incidence, and storage life. The results showed that fruit treated with 1500 nl l<sup>-1</sup><strong> </strong>1-MCP for 24 h had the maximal fruit firmness. For chlorophyll content, the results showed that fruit-treated with 1500 nl l<sup>-1</sup><strong> </strong>1-MCP for 12 h could effectively retain the highest chlorophyll contents. Furthermore, both the lowest fruit decay and the longest storage life of 12 days were achieved from the fruit treated with 1000 nl l<sup>-1</sup><strong> </strong>1-MCP for 12 h.</p>


HortScience ◽  
2006 ◽  
Vol 41 (6) ◽  
pp. 1400-1401 ◽  
Author(s):  
Lajos Helyes ◽  
Zoltán Pék ◽  
Andrea Lugasi

Soluble solids (Brixo), carbohydrate, organic acid, lycopene, polyphenols and HMF content of indeterminate round type tomato Lemance F1 fruits were measured in six ripeness stages from mature green to deep red stage. Color of fruits was determined by CIELab system. The L*, a*, b* values were received directly and used to calculate from which the a*/b* ratio was calculated. The Brixo, carbohydrate, lycopene and HMF content were the highest in the deep red stage. Carbohydrate contents constitute nearly 50% of the Brixo. The mature green stage had the lowest acid content but in subsequent stages it was fundamentally unchanged. Polyphenol content changed little during fruit ripening. Lycopene content changed significantly during maturation and accumulated mainly in the deep red stage. Analyses showed that a*/b* was closely correlated with lycopene and can be used to characterize stages of maturity in fresh tomatoes.


Author(s):  
Ahmad Sattar Khan ◽  
Kamal Hussain ◽  
Hafiz Muhammad Shoaib Shah ◽  
Aman Ullah Malik ◽  
Raheel Anwar ◽  
...  

Peach (Prunus persica L.) fruits exhibit limited postharvest shelf and storage life due to rapid softening. Therefore, in the present study effect of cold storage was investigated on postharvest chilling injury (CI) and fruit quality during ripening following cold storage on five peach cultivars including ‘Peach Select No. 3’ (PS-3), ‘Florida Gold’ (FG) and ‘Florida King’ (FK) as early season maturing, and ‘Indian Blood’ (IB) and ‘Maria Delezia’ (MD) as late season maturing cultivars. Peach fruits harvested at commercial maturity were ripened at ambient conditions following cold storage for 0, 10 and 20 days at 0±1 °C with 80±5% RH. Data regarding peach fruit quality parameters and incidence of CI were recorded at fully ripe eating soft stage. Results indicated that apart from the cultivars, fruit weight loss, levels of soluble solid content (SSC) and sugars increased as the storage period was progressed. However, fruit firmness, titratable acidity (TA), and ascorbic acid content significantly reduced during cold storage. Among early season maturing peach cultivars, fruits of ‘FG’ and among late season maturing peach cultivars, fruits of ‘MD’ showed better postharvest shelf life and fruit quality during ripening following cold storage. The highest SSC and SSC: TA ratio were observed in ‘FG’ peach fruits; however, these fruits exhibited 50% and 75% CI after 10 and 20 days of cold storage, respectively. During first 10 days of cold storage, ‘PS-3’ peach fruits showed better taste with higher fruit firmness and ascorbic acid content, however, later on the highest level of CI was observed in these fruits. Among all the tested peach cultivars, the ‘IB’ peach fruits showed higher fruit firmness, lower weight loss, as well as acceptable biochemical fruit quality (SSC, SSC; TA, ascorbic acid content, total sugars) during 20 days of cold storage without showing any symptoms of CI.


Agriculture ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 13 ◽  
Author(s):  
Lisa Wasko DeVetter ◽  
Wei Qiang Yang ◽  
Fumiomi Takeda ◽  
Scott Korthuis ◽  
Changying Li

Improved blueberry mechanical harvesting (MH) equipment that maintains fresh market quality are needed due to rising costs and decreasing availability of laborers for harvesting by hand. In 2017, a modified over-the-row (OTR) blueberry harvester with experimental catch surfaces and plates designed to reduce fruit bruising was evaluated. The catch surfaces were made of neoprene (soft catch surface; SCS) or canvas (hard catch surface; HCS) and compared to hand-picked fruit (control). Early- and early/mid-season ‘Duke’ and ‘Draper’, respectively, were evaluated in Oregon, while late-season ‘Elliott’ and ‘Aurora’ were evaluated in Washington. Harvested berries were run through commercial packing lines with fresh pack out recorded and bruise incidence or fresh fruit quality evaluated during various lengths of cold storage. The fresh pack out for ‘Duke’ and ‘Draper’ were 83.5% and 73.2%, respectively, and no difference was noted between SCS and HCS. ‘Duke’ fruit firmness was highest among MH berries with SCS, but firmness decreased in storage after one week. Firmness was highest among hand harvested ‘Draper’ followed by MH with SCS. For ‘Elliott’ and ‘Aurora’, fruit firmness was the same across harvesting methods. ‘Draper’ exhibited more bruising than ‘Duke’, but bruise ratings and the incidence of bruising at ≤10% and ≤20% were similar between hand and MH ‘Draper’ with SCS after 24 h of harvest. ‘Aurora’ berries had similar bruise ratings after 24 h between hand harvesting and MH with SCS, while ‘Elliott’ showed more bruise damage by MH with both SCS and HCS than hand harvested fruit. Although our studies showed slightly lower fresh market blueberry pack outs, loss of firmness, and increased bruise damage in fruit harvested by the experimental MH system compared to hand harvested fruit, higher quality was achieved using SCS compared to HCS. We demonstrated that improved fresh market quality in northern highbush blueberry is achievable by using modified OTR harvesters with SCS and fruit removal by either hand-held pneumatic shakers or rotary drum shakers.


2006 ◽  
Vol 54 (6) ◽  
pp. 2229-2235 ◽  
Author(s):  
Gloria Bailén ◽  
Fabián Guillén ◽  
Salvador Castillo ◽  
María Serrano ◽  
Daniel Valero ◽  
...  

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 498A-498
Author(s):  
Laurence A. Sistrunk ◽  
Dan Chapman ◽  
J. Benton Storey

The Packhard treatment included Packhard® Caenise at 3 qt/A rate applied at four equally spaced intervals beginning on 1 May 1996 and continuing until harvest on 29 July 1996. After harvest, treated and nontreated peaches were stored at 1°C, 95% RH. For up to 42 days, after which they were allowed to ripen for 6 days at 18°C. Fruit from 5-day storage intervals and 2-day ripening intervals were then evaluated for firmness, color, brown rot lesions, soluble solids, titratable acidity, starch, pectin, total Ca, and fruit epidermis thickness. Packhard protected the fruit in cold storage for 42 days from brown rot compared to the controls, which began to breakdown in 26 days. The ripening studies have given mixed results suggesting that there is no difference in the degree of brown rot contamination between Packhard-treated fruit and control fruit after removal from storage. Fruit firmness was increased by Packhard in the majority of the storage periods. Sucrose content seemed to have been reduced in the Packhard-treated fruit compared to the controls, possibly due to increased respiration. The Packhard-treated fruit retained more moisture than the control fruit,, which indicates that Ca2+ from Packhard may have increased the integrity of the plasma membranes of treated fruit. In general, the Packhard-treated fruit held up much better in cold storage than the control fruit but was not different in brown rot infection during ripening. Packhard increased fruit firmness and allowed the fruit to retain more moisture than the control fruit. Sucrose content decreased in Packhard-treated fruit compared to the controls.


Sign in / Sign up

Export Citation Format

Share Document