scholarly journals Temperature and Phosphorus Source Affect Phosphorus Retention by a Pine Bark-based Container Medium

HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 236-240 ◽  
Author(s):  
Janet C. Cole ◽  
John M. Dole

These studies were conducted to determine the effect of 1) temperature on P leaching from a soilless medium amended with various P fertilizers, 2) water application volume on P leaching, and 3) various fertilizers on P leaching during production and growth of marigolds (Tagetes erecta L. `Hero Flame'). Increasing temperature linearly decreased leaching fraction; however, total P leached from the single (SSP) or triple (TSP) superphosphate-amended medium did not differ regardless of temperature. Despite a smaller leaching fraction at higher temperatures and no change in the total P leached, P was probably leached more readily at higher temperatures. More P was leached from the medium amended with uncoated monoammonium phosphate (UCP) than from the medium containing polymer-coated monoammonium phosphate (CTP) at all temperatures, and more P was leached from UCP-amended medium at lower temperatures than at higher temperatures. More P was leached from TSP- than from SSP-amended medium and from UCP- than from CTP-amended medium regardless of the water volume applied, but leachate P content increased linearly as water application volume increased for all fertilizers tested. Plant dry weights did not differ regardless of P source. Leachate electrical conductivity (EC) was lower with TSP than with SSP. Leachate EC was also lower with CTP than with UCP. A higher percentage of P from controlled release fertilizer was taken up by plants rather than being leached from the medium compared to P from uncoated fertilizers.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 466c-466
Author(s):  
Catherine S. M. Ku ◽  
David R. Hershey

Single-pinched `Yours Truly' geranium (Pelargonium × hortorum) were greenhouse grown in 15-cm diameter pots. They received constant liquid fertigation with a modified Hoagland solution #1 at 0.25, 0.5, 1.0, and 1.5 strength. The 1.0 strength Hoagland solution contained 210 mg/L NO3-N and 31 mg/L P. Leaching fractions (LFs) were 0, 0.2 and 0.4. The total P applied via fertigation ranged from 33 mg at 0 LF and 0.25x Hoagland to 407 mg at 0.4 LF and 1.5x Hoagland. The leachate P concentration ranged from <5 mg/L to -60 mg/L. The P concentration in the recently matured leaves was in the acceptable range for all treatments. We were able to recover 90 to 99% of the applied P by analyzing the shoots, soilless medium, and leachate. Only 4% of the recovered P was in the leachate for plants receiving 0.5x Hoagland and a 0.2 LF. However, these plants were equal in yield to plants receiving higher fertigation rates and higher LFs.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 858G-858
Author(s):  
Catherine S.M. Ku

Earlier study indicates that greenhouse crop production may be an overlooked point source of P pollution. A potential strategy to reduce P leaching may be to eliminate superphosphate amendment in soilless medium. Single-pinched `Amy' poinsettias (Euphorbia pulcherrima) in 15-cm pots were grown in a soilless medium of 3 peat: 1 perlite: 1 vermiculite (by volume). A treatment combination of preplant, finely ground, single superphosphate (SSP) (0N–8.8P–0K) amendment at 0 or 172 mg/pot and leaching fractions (LFs) of 0 and 0.2 were evaluated in a completely randomized design during a 10.5-week study. Plants received constant liquid fertigation with 7.8 mg P/liter and 210 mg N/liter from modified Hoagland solution #1. The total P applied via fertigation ranged from ≈38 mg at 0 LF to ≈50 mg at 0.2 LF. The leachate P concentration ranged from 4 mg/liter to 38 mg/liter. There was no significant difference in yield due to SSP and LF. Across all treatments, mean fresh mass was 36 g, mean dry mass was 5.9 g, mean leaf area was 980 cm2, and mean bract area was 1900 cm2.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 447
Author(s):  
Martin Buchtík ◽  
Leoš Doskočil ◽  
Roman Brescher ◽  
Pavel Doležal ◽  
Jiří Másilko ◽  
...  

This paper deals with the study of the crystallization and phase transformation of Ni-P coatings deposited on AZ91 magnesium alloy. Prepared samples were characterized in terms of surface morphology and elemental composition by means of scanning electron microscopy with energy-dispersive spectroscopy analysis. The results of X-ray diffraction analysis and differential scanning calorimetry suggested that increasing the phosphorus content caused Ni-P coatings to develop an amorphous character. The crystallization of Ni was observed at 150, 250, and 300 °C for low-, medium- and high-phosphorus coatings, respectively. The Ni crystallite size increased with increasing temperature and decreasing P content. Conversely, the presence of the Ni3P phase was observed at a maximum peak of 320 °C for the high-phosphorus coating, whereas the crystallization of the Ni3P phase shifted to higher temperatures with decreasing P content. The Ni3P crystallite size increased with increasing temperature and increasing P content. An increase in microhardness due to the arrangement of Ni atoms and Ni3P precipitation was observed. The deposition of as-deposited Ni-P coatings led to an improvement in the corrosion resistance of AZ91. However, the heat treatment of coatings resulted in a deterioration in corrosion properties due to the formation of microcracks.


1985 ◽  
Vol 65 (3) ◽  
pp. 467-473 ◽  
Author(s):  
V. K. BHATNAGAR ◽  
M. H. MILLER

A series of laboratory experiments was conducted to determine the mechanism(s) responsible for a previously reported observation that addition of liquid manure to soil increased the NaHCO3-extractable P (Ext-P) of large aggregates (> 2 mm) more than that of smaller aggregates whereas addition of an inorganic P solution did not. Application of liquid poultry manure increased the total P, Ext-P and total C concentrations in large aggregates (> 2 mm) much more (> 2.5 ×) than that in small aggregates (< 1 mm). Addition of inorganic P solution or of supernatant liquid from a centrifuged manure slurry increased the P content of the large aggregates only slightly (1.2 ×). A greater increase in Ext-P in large aggregates was observed even when the smaller aggregates were purposely layered on top of the larger ones prior to addition of the liquid manure. A similar but less pronounced effect of aggregate size on increase in P or C concentration was observed when different sized aggregates were left in contact with an effectively infinite source of liquid manure for 24 h. It is concluded that the larger aggregates absorbed more of the bulk manure slurry than smaller aggregates. A partial sealing of small aggregates by particulates is suggested as a possible mechanism. Key words: Carbon, phosphorus, liquid manure, soil aggregates


2017 ◽  
Vol 52 (5) ◽  
pp. 319-327 ◽  
Author(s):  
Rogério Piccin ◽  
Rafael da Rosa Couto ◽  
Roque Júnior Sartori Bellinaso ◽  
Luciano Colpo Gatiboni ◽  
Lessandro De Conti ◽  
...  

Abstract: The objective of this work was to evaluate phosphorus forms in grape leaves and their relationships with must composition and yield in grapevines grown in a Typic Hapludalf with different available P contents. Two experiments were carried out with Vitis viniferacultivars, one with 'Tannat' and the other with 'Cabernet Franc' grapes. Experiment 1 consisted of two vineyards of 'Tannat', with the following P content in the soil: V1, 11.8 mg kg-1 P; and V2, 34.6 mg kg-1 P. Experiment 2 consisted of two vineyards of 'Cabernet Franc', with the following P content in the soil: V1, 16.0 mg kg-1 P; and V2, 37.0 mg kg-1 P. Leaves were collected at flowering (FL) and veraison (V), and, after their preparation, P forms were evaluated. Yield and must composition were assessed. The highest yield was observed in V2 of experiment 1 and in V2 of experiment 2. Total P content and P forms in leaves at FL and V have no relationship with yield parameters; however, total P content in leaves has a relationship with anthocyanin content in the must of 'Tannat' grapevines. Therefore, P fractionation in leaves predicts neither grapevine yield nor must composition.


1997 ◽  
Vol 122 (3) ◽  
pp. 459-464 ◽  
Author(s):  
Catherine S.M. Ku ◽  
David R. Hershey

Poinsettias (Euphorbia pulcherrima Willd. ex Klotzsch `V-14 Glory') grown as single-pinched plants and received constant fertigation of Hoagland solution with N at 210 mg·L-1 of 100% NO3-N or 60% NO3-N : 40% NH4-N; P at 7.8 and 23 mg·L-1; and leaching fractions (LFs) of 0, 0.2, or 0.4. The P at 23 mg·L-1 used in this study was about half the P concentration typically provided from a 20N-4.4P-16.6K fertilizer at 200 mg·L-1 N fertigation. The total P applied via fertigation ranged from 51 mg at the 0 LF to 360 mg at the 0.4 LF. The leachate P concentration ranged from 0.2 to 46 mg·L-1. With P at 7.8 mg·L-1, the percentage of total P recovered in the leachate was 6% to 7%. At 23 mg·L-1 P fertigation, however, the total P recovered in the leachate with 60% NO3-N treatment was 2-times greater than with 100% NO3-N treatment. This result is attributed to a lower substrate pH, which resulted from NH4-N uptake and nitrification processes with 60% NO3-N fertigation. The P concentration in the recently matured leaves with 7.8 mg·L-1 P fertigation was in the normal range of 0.3% to 0.6%. Fertigation P can be reduced by up to 80% and still be sufficient for producing quality poinsettias. Reducing the fertigation P concentration is beneficial because it reduces P leaching, reduces fertilizer costs, and reduces luxury consumption.


2018 ◽  
Author(s):  
Jörg Niederberger ◽  
Martin Kohler ◽  
Jürgen Bauhus

Abstract. Repeated, grid-based forest soil inventories such as the nationwide German forest soil survey (GFSI) aim, among other things, at detecting changes in soil properties and plant nutrition. In these types of inventories, the only information on soil phosphorus (P) is commonly the total P content. However, total P content in mineral soils of forests is usually not a meaningful variable to predict the availability of P to trees. Here we tested a modified sequential P extraction ac-cording to Hedley to determine the distribution of different plant available P fractions in soil samples (0–5 and 10–30 cm depth) from 146 GFSI sites, capturing a wide variety of soil conditions. In addition, we analyzed relationships between these P fractions and common soil proper-ties such as pH, texture, and organic Carbon content (SOC). Total P content among our samples ranged from approximately 60 up to 2800 mg kg−1. The labile, moderately labile, and stable P fractions contributed to 27 %, 51 % and 22 % of total P content, respectively, at 0–5 cm depth. At 10–30 cm depth, the labile P fractions decreased to 15 %, whereas the stable P fractions in-creased to 30 %. These changes with depth were accompanied by a decrease in the organic P fractions. High P contents were related with high pH-values. Whereas the labile P pool increased with decreasing pH in absolute and relative terms, the stable P pool decreased in absolute and relative terms. Increasing SOC in soils led to significant increases in all P pools and in total P. In sandy soils, the P content across all fractions was lower than in other soil texture types. Multiple linear regressions indicated that P pools and P fractions were moderately well related to soil properties (r2 mostly above 0.5), and sand content of soils had the strongest influence. Foliage P concentrations in Pinus sylvestris were reasonably well explained by the labile and moderately labile P pool (r


2003 ◽  
Vol 83 (4) ◽  
pp. 337-342 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
S. H. Begna ◽  
B. L. Ma ◽  
D. L. Smith

The ability of arbuscular mycorrhizal (AM) fungi to help their host plant absorb soil P is well known, but little attention has been paid to the effect of AM fungi on soil P depletion capacity. A greenhouse experiment was conducted to assess, under different P levels, the effects of mycorrhizae on extractable soil P and P uptake by maize hybrids with contrasting phenotypes. The experiment had three factors, including two mycorrhizal treatments (mycorrhizal and non-mycorrhizal), three P fertilizer rates (0, 40, and 80 mg kg-1) and three maize hybrids [leafy normal stature (LNS), leafy reduced stature (LRS) and a conventional hybrid, Pioneer 3979 (P3979)]. Extractable soil P was determined after 3, 6 and 9 wk of maize growth. Plant biomass, P concentration and total P content were also determined after 9 wk of growth. Fertilization increased soil extractable P, plant biomass, P concentration in plants and total P uptake. In contrast to P3979, the LNS and LRS hybrids had higher biomass and total P content when mycorrhizal. Mycorrhizae had less influence on soil extractable P than on total P uptake by plants. The absence of P fertilization increased the importance of AM fungi for P uptake, which markedly reduced soil extractable P under AM plants during growth. This effect was strongest for LNS, the most mycorrhizae-dependent hybrid, intermediate for LRS, and not significant for the commercial hybrid P3979, which did not respond to AM inoculation. Key words: Arbuscular mycorrhizal fungi, extraradical hyphae, maize hybrid,plant biomass, P uptake, soil extractable P


SOIL ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 189-204 ◽  
Author(s):  
Jörg Niederberger ◽  
Martin Kohler ◽  
Jürgen Bauhus

Abstract. Repeated, grid-based forest soil inventories such as the National Forest Soil Inventory of Germany (NFSI) aim, among other things, at detecting changes in soil properties and plant nutrition. In these types of inventories, the only information on soil phosphorus (P) is commonly the total P content. However, total P content in mineral soils of forests is usually not a meaningful variable with respect to predicting the availability of P to trees. Here we tested a modified sequential P extraction according to Hedley (1982) to determine the distribution of different plant-available P fractions in soil samples (at depths of 0–5 and 10–30 cm) from 146 NFSI sites, encompassing a wide variety of soil conditions. In addition, we analyzed relationships between these P fractions and common soil properties such as pH, texture, and soil organic carbon content (SOC). The total P content among our samples ranged from approximately 60 to 2800 mg kg−1. The labile, moderately labile, and stable P fractions contributed to 27 %, 51 %, and 22 % of the total P content, respectively, at a depth of 0–5 cm. At a depth of 10–30 cm, the labile P fractions decreased to 15 %, whereas the stable P fractions increased to 30 %. These changes with depth were accompanied by a decrease in the organic P fractions. High P contents were related to high pH values. While the labile Hedley P pool increased with decreasing pH in absolute and relative terms, the stable Hedley P pool decreased in absolute and relative terms. Increasing SOC in soils led to significant increases in all Hedley P pools and in total P. In sandy soils, the P content across all fractions was lower than in other soil texture types. Multiple linear regression models indicated that Hedley P pools and P fractions were moderately well related to soil properties (with r2 values that were mostly above 0.5), and that the sand content of soils had the strongest influence. Foliar P contents in Pinus sylvestris were reasonably well explained by the labile and moderately labile P pool (r2 = 0.67) but not so for Picea abies and Fagus sylvatica. Foliar P contents in all three species could not be related to specific Hedley P pools. Our study indicates that soil properties such as pH, SOC content, and soil texture may be used to predict certain soil Hedley P pools with different plant availability on the basis of large soil inventories. However, the foliar P contents of tree species cannot be sufficiently well predicted by the soil variables considered here.


1976 ◽  
Vol 33 (1) ◽  
pp. 85-92 ◽  
Author(s):  
S. L. Wong ◽  
B. Clark

Many streams in southern Ontario experience excessive seasonal growth of aquatic plants such as Cladophora and Potamogeton. A direct relation, with a regression coefficient of 0.87, was observed between ambient P concentration in the water and P content of plant tissue in six rivers. Critical or growth controlling total P concentration of 60 μg/liter in stream water and 1.6 mg/gram dry weight in plant tissue were determined. Unlike P, no significant correlation was observed between N content of plant tissue and N concentration in water. The correlation of total P with plant growth can be used to estimate the waste load which would result in maximum growth rate of Cladophora.


Sign in / Sign up

Export Citation Format

Share Document